
U.S.N.A.—Trident Scholar project report; no. 369 (2008)

COMPARING THROUGHPUT AND POWER CONSUMPTION IN BOTH
SEQUENTIAL AND RECONFIGURABLE PROCESSORS

by

Midshipman 1/c Kevin K. Liu
United States Naval Academy

Annapolis, Maryland

(signature)

Certification of Advisers Approval

CDR Charles B. Cameron, USN
Department of Electrical and Computer Engineering

(signature)

(date)

Professor Antal Sarkady
Department of Electrical and Computer Engineering

(signature)

(date)

Acceptance for the Trident Scholar Committee

Professor Joyce E. Shade
Deputy Director of Research & Scholarship

(signature)

(date)

USNA-1531-2

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including g the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
5 May 2008

3. REPORT TYPE AND DATE COVERED

4. TITLE AND SUBTITLE
Comparing Throughput and Power Consumption in Sequential
and Reconfigurable Processors

6. AUTHOR(S)

Liu, Kevin K.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

US Naval Academy
Annapolis, MD 21402

Trident Scholar project report no.
369 (2008)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
This document has been approved for public release; its distribution
is UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT This research project involves an investigation of parallel processing using reconfigurable logic devices. The goal of this project is to
support the Naval Research Labs’ recent acquisition of a Cray XD-1 supercomputer. A feature of the Cray XD-1 is that it contains field programmable gate
arrays (FPGAs). These reconfigurable devices contain hardware whose connections can be modified to target a specific computation. This adaptability can
significantly improve the processing speed of computationally intensive operations. Recent improvements in the memory capacity of FPGAs have spurred
interest in using the devices for arithmetic floating-point operations using the IEEE 754 standard. However, adapting a program designed to run on a sequential
processor to be run instead on an FPGA can be time consuming and difficult for anyone lacking significant experience in hardware design. In this project, a
high-level language (HLL)—Mitrion-C 1.4—was used to reduce some of this effort. Using this language, two calculations taken from a ray-tracing simulation of
NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) were implemented on an FPGA. The calculations consisted of floating-point additions,
subtractions, multiplications, divisions, and square root extractions. It was feasible to perform many of the calculations in parallel, leading to a substantial
increase in system throughput. Functionally identical programs were also implemented on a sequential processor—an Opteron 275—using the American
National Standards Institute’s standard for C (ANSI-C). Those portions of the FPGA design and of the sequential programs that were dedicated to performing
scientific calculations were isolated and their processing time was measured using functions written in ANSI-C and calculated by the sequential processor. In
addition, power consumption was measured both while the FPGA hardware implementation ran and while the sequential program ran. The results showed that
implementing the two calculations on an FPGA was about 900% faster than a sequential processor, requiring only roughly a 30% increase in power consumed.

15. NUMBER OF PAGES
83

14. SUBJECT TERMS field programmable gate arrays,
floating point arithmetic, high-performance
reconfigurable computing, Mitrion-C, power consumption

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298
 (Rev.2-89) Prescribed by ANSI Std. Z39-18

298-102

1

Abstract
This research project involves an investigation of parallel processing using reconfigurable logic

devices. The goal of this project is to support the Naval Research Labs’ recent acquisition of a Cray
XD-1 supercomputer. A feature of the Cray XD-1 is that it contains field programmable gate arrays
(FPGAs). These reconfigurable devices contain hardware whose connections can be modified to
target a specific computation. This adaptability can significantly improve the processing speed of
computationally intensive operations.

Recent improvements in the memory capacity of FPGAs have spurred interest in using the de-
vices for arithmetic floating-point operations using the IEEE 754 standard. However, adapting a
program designed to run on a sequential processor to be run instead on an FPGA can be time con-
suming and difficult for anyone lacking significant experience in hardware design. In this project,
a high-level language (HLL)—Mitrion-C 1.4—was used to reduce some of this effort. Using this
language, two calculations taken from a ray-tracing simulation of NASA’s Moderate Resolution
Imaging Spectroradiometer (MODIS) were implemented on an FPGA. The calculations consisted
of floating-point additions, subtractions, multiplications, divisions, and square root extractions.
It was feasible to perform many of the calculations in parallel, leading to a substantial increase
in system throughput. Functionally identical programs were also implemented on a sequential
processor—an Opteron 275—using the American National Standards Institute’s standard for C
(ANSI-C).

Those portions of the FPGA design and of the sequential programs that were dedicated to per-
forming scientific calculations were isolated and their processing time was measured using func-
tions written in ANSI-C and calculated by the sequential processor. In addition, power consump-
tion was measured both while the FPGA hardware implementation ran and while the sequential
program ran. The results showed that implementing the two calculations on an FPGA was about
900% faster than a sequential processor, requiring only roughly a 30% increase in power consumed.

Keywords: field programmable gate arrays, floating point arithmetic, high-performance reconfig-
urable computing, Mitrion-C, power consumption

2

Acknowledgements
I would like to thank the United States Naval Academy Electrical Engineering Department for

providing their support and equipment for this project. In particular, I would like to thank my
advisers CDR Charles B. Cameron and Professor Antal A. Sarkady for their support, patience, and
instruction.

This work was supported in part by a grant of computer time from the DOD High Performance
Computing Modernization Program (DoD HPCMP) at the Naval Research Laboratory (NRL). I
would like to thank the many scientists including Wendell Anderson, Rick Hurd, Jeanie Osburn,
and Ray Yee at NRL who willingly shared their time and expertise. This work was also supported
by Kenneth Sarkady, Head of the Infrared Countermeasures Systems Section.

3

Contents

List of Figures 5

List of Tables 6

1 Introduction 7

2 Background 9
2.1 Field-Programmable Gate Arrays . 9
2.2 Software Development vs. Hardware Design . 10
2.3 IEEE 754 Single-Precision Floating-Point Representation 12
2.4 Mathematical Operations with Floating-point Numbers 13
2.5 Scheduling . 15

3 Related Work 18
3.1 Implementation of Floating-Point Operations on FPGAs 18
3.2 Implementation of the MODIS System . 19
3.3 The Trident Compiler . 21
3.4 Previous Use of Mitrion-C . 22

4 Implementation 23
4.1 The Mitrion Platform . 23
4.2 The Cray XD1 Architecture . 25
4.3 Description of the Calculations Implemented . 26
4.4 The FPGA Design . 29

4.4.1 Implementation of the Normal-Vector Calculation 29
4.4.2 Implementation of the Ray-Intersection Calculation 32

4.5 The Sequential Program . 33

5 Results 35
5.1 Resource Consumption . 35
5.2 Throughput Measurement . 38
5.3 Power Measurement . 39

4

6 Conclusion 46

Bibliography 47

A Mitrion-C Code of Ray-Intersection Calculation 50

B Mitrion-C Code of Normal-Vector Calculation 55

C ANSI-C Host Code of Ray-Intersection Calculation 60

D ANSI-C Host Code of Normal-Vector Calculation 67

E ANSI-C Sequential Implementation of Ray-Intersection Calculation 74

F ANSI-C Sequential Implementation of Normal-Vector Calculation 79

5

List of Figures

2.1 FPGA architecture. 10
2.2 Hardware design flow. 11
2.3 IEEE 754 Single-precision floating-point representation. 12
2.4 Floating-point multiplication algorithm. 14
2.5 Two scheduling techniques applied to a single task. 15
2.6 Modulo scheduling example . 17

3.1 Amdahl’s law versus measured performance. 20

4.1 Hardware design flow. 23
4.2 Mitrion-C Design Flow. 24
4.3 Cray XD1 architecture. 25
4.4 Cray XD1 memory connections. 26
4.5 Data flow between host and FPGA programs. 27
4.6 Interaction of an incident ray with a conic surface. 28
4.7 Detailed data flow between normal-vector calculation host and FPGA programs. . . 30
4.8 Mitrion-C simulation of normal-vector calculation. 31
4.9 Mitrion-C simulation of ray-intersection calculation. 32
4.10 Data flow in sequential program. 34

5.1 Mitrion-C simulation of calc_ouputs() function of ray-intersection simulation. . . . 36
5.2 Background power measurements of a node without an FPGA. 41
5.3 Normal-vector calculation implemented with only an Opteron 275 on a node with-

out an FPGA. 42
5.4 Ray-intersection calculation implemented with only an Opteron 275 on a node

without an FPGA. 42
5.5 Background power measurements of a node with an FPGA. 43
5.6 Normal-vector calculation implemented with only an Opteron 275 on a node with

an FPGA. 43
5.7 Normal-vector calculation implemented with a Virtex-II Pro and an Opteron 275. . 44
5.8 Ray-intersection calculation implemented with only an Opteron 275 on a node with

an FPGA. 44
5.9 Ray-intersection calculation implemented with a Virtex-II Pro and an Opteron 275. 45

6

List of Tables

2.1 Truth table comparing XOR and binary addition. 13

4.1 Conic constants and conicoid types. 27

5.1 Ray-intersection resource consumption. 37
5.2 Normal-vector resource consumption. 37
5.3 Ray-intersection throughput measurements. 38
5.4 Normal-vector throughput measurements. 39
5.5 Ray-intersection power measurements. 40
5.6 Normal-vector power measurements. 40

7

Chapter 1

Introduction

The Naval Research Laboratory (NRL) acquired a Cray XD1 supercomputer in 2005. The system
uses 840 AMD Opteron 275 Dual-Core processors and 144 Xilinx Virtex-II Pro Field-Program-
mable Gate Arrays (FPGAs) [1]. The system was purchased by the Center for Computational
Science, located in the Information Technology Division, and seeks to provide high-performance
computing (HPC) resources for Department of Defense (DoD) research [2]. high-performance
computing describes the use of processors or computing nodes connected in parallel to perform
supercomputing. The performance of an HPC system is typically measured in FLOPS, which
refers to Floating-point Operations Per Second.

In traditional HPC a given application is split between large numbers of commercially-available
sequential processors running in parallel. This approach permits high throughput at relatively
low expense. However, conventional processors are typically designed to be used for sequential
operations. When heavily parallel problems are implemented on them, these processors often
cannot reach full utilization. Although connecting many nodes in parallel has allowed HPC to
be done using conventional processors, portions of each processor needed for other applications
might sit idle during a parallel task, thus resulting in inefficiencies in both cost and performance.

Field-Programmable Gate Arrays (FPGAs) are semiconductor devices containing many “logic
blocks” that can be reconfigured to perform basic logic functions, such as AND, OR, and NOT.
These basic logic functions are the foundations of all computing tasks and any other application,
including arithmetic, can be created using only these functions. Because they are reprogrammable,
FPGAs have in the past been used to test circuit designs before mass production. However, recent
advances in FPGA technology have made it to feasible to perform floating-point operations on
FPGAs.

NRL purchased the Cray XD1 to test the applicability of using FPGAs to accelerate Navy
and Department of Defense applications. Despite previous research that shows that floating-point
operations are not only possible on FPGAs but should be accelerated by their use, the fact remains
that customizing an FPGA for a specific application is generally regarded as a time-consuming and
technically difficult process. Several techniques have been applied to simplifying the process of
programming an FPGA, to varying levels of success [3]. This project gathered data on cost versus
benefit when implementing a particular application on FPGAs.

8

In this project the IEEE 754 standard [4] was used for floating-point representation. Although
past research [5], [6], [7], has found that representing floating-point numbers using custom formats
on FPGAs typically requires fewer resources from the FPGAs and can be run faster, the scientific
community has largely adopted the IEEE 754 standard.

A specific application was selected to investigate floating-point operation performance. The
application was an optical simulation of NASA’s Moderate Resolution Imaging Spectroradiometer
(MODIS). The MODIS simulation was chosen for three reasons. First, previous research has
shown that the problem is highly amenable to parallel processing [8]. Second, the problem can use
the IEEE 754 standard. Finally, the problem requires implementation of floating-point addition,
subtraction, multiplication, division, and square root. Since these mathematical functions are the
most used in the vast majority of possible scientific functions, a study into their performance on
FPGAs is applicable to FPGA floating-point operations in general.

A cost-versus-benefit analysis comparing current FPGA technology to available conventional
processors was sought in this project. Modern HPC systems are expensive to operate because of
power and heat requirements. Initial experiences with high-performance computing using FPGAs
have suggested that total power consumption can be reduced because FPGAs operate at lower
clock speeds and so draw less power per chip. The only way FPGAs can show improvements in
throughput over processors with higher clock speeds, therefore, is if they are customized so that
their resources are more heavily used.

Although the specifications of current technology indicate that employing FPGAs over con-
ventional processors would be more cost-effective, these assertions have yet to be quantitatively
confirmed with a realistic application. The FPGAs available on the Cray XD1 have access to
16 megabytes (MB) of memory for input and output [1]. Many applications require more than
16 MB, so in those cases, a conventional processor with access to larger banks of memory repeat-
edly transfers data between the FPGA and external memory. The effects on power requirements
and throughput of this use of conventional processors in conjunction with FPGAs are not well
documented. In this project, a practical scientific application was implemented on commercially
available reconfigurable devices in order to generate a cost-benefit comparison for an application
using both FPGAs and conventional processors.

9

Chapter 2

Background

2.1 Field-Programmable Gate Arrays
A useful primer to understanding FPGA architecture is Brown and Rose’s Architecture of FPGAs
and CPLDs: A Tutorial [9]. Field-Programmable Gate Arrays are a type of Field-Programmable
Device (FPD). FPDs are sometimes also known as Programmable Logic Devices (PLDs). These
terms generally describe devices that can be configured by the user to implement hardware designs.
Using FPDs allows designers to test their designs without having to incur the high fixed costs
associated with custom-designed integrated circuits.

Traditional semiconductor devices implement hardware designs by creating devices and the
electrical connections between them on a single integrated circuit. The precursor to the FPGA was
the Mask-Programmable Gate Array (MPGA). These devices consisted of transistors, the basic
building blocks of almost all electrical circuitry, in an array that could be connected physically
at the time of manufacture to realize a circuit design. However, this technique required that a
customized chip be fabricated, an expensive process because of high associated fixed costs. The
FPGA applies the concept of an MPGA but is implemented using user-programmable technology.

Figure 2.1 on the following page shows the architecture of an FPGA. Each of the input/output
(I/O) blocks can be configured for input, output, or bidirectional behavior. The logic blocks can
be configured to behave as any combination of logic gates. The physical connections between
logic blocks can be switched on or off by the user to connect logic blocks without the need for
physical fabrication [10]. The figure gives an idea of how any I/O or logic block can potentially be
connected to any other block by reconfiguring the FPGA’s network of connections.

Development of FPDs has recently been focused mostly on FPGAs because they employ Dy-
namic Random Access Memory (DRAM), and so have a higher logic capacity than other FPDs.
Logic capacity refers to the amount of logic that can be mapped to a given FPD. It is usually
compared to the equivalent number of logic gates that would be available on a traditional gate
array [9].

10

Logic
Blocks

Programmable
Interconnects

I/O
Blocks

Figure 2.1: FPGA architecture.

2.2 Software Development vs. Hardware Design
In this report, the terms software development and hardware design are used to distinguish between
two different production methodologies. Whereas software engineers are most concerned about
the correctness of their algorithms and can ignore many hardware constraints, hardware designers
cannot afford to do so: from the outset they must consider the actual physical limitations of the
device they are working with. This is also why what could be considered a “program” for an
FPGA is known instead as a design—because hardware code is literally mapped to the physical
components of a device, and so has more in common with circuit design than software programs.

Working with both hardware and software, as is the case in this project, can present challenges
because of overlapping terminology and cultural differences between the two fields. The main
difference lies in the level of abstraction. Software is created at a high level of abstraction. This
means that software developers work with logic, but the implementation of that logic is taken care
of by the target device (a processor). The benefit of high-level programming is that software can
usually be run on a wide variety of devices without device-specific customization.

Hardware design functions in the "real world" of physical things. Hardware designers must

11

FPGA

Design Simulation Synthesis Place and
Route Download

Hardware Design Language
Or High-Level Abstraction Tool

Device Constraints

Figure 2.2: Hardware design flow.

be aware of their target device’s physical constraints, such as available memory, logic blocks, and
physical connections between elements. Working with such a low level of abstraction, that is, at
such a high level of detail, has traditionally meant that hardware design takes significantly longer
than software development [11].

Efforts have been made to increase the abstraction level available for hardware design so as
to allow researchers with less experience in the field to customize hardware for their projects.
However, attempts to bridge software and hardware have faced difficulty in overcoming a basic
difference in design methodology. Software developers design sequential code. That is, they act
as if each line of code is run after every line preceding it. Hardware developers, on the other hand,
must always think in parallel. All blocks within a hardware design are synchronized by a clock, but
can process inputs and outputs independently of all other blocks. Figure 2.2 shows the hardware
design process and is discussed below.

Hardware design can begin at a relatively high level of abstraction if a high-level language
(HLL) is used. The development of these tools is further discussed in section 3.1 on page 18.
After the design stage, a simulator is used to test that the logic of a hardware design is functionally
correct. While this step would essentially be the last step in software development, a hardware
design must go through several more processes before it can be loaded onto a device. Compilation
of a hardware design requires two steps. First, the synthesis step generates a device-independent
intermediate representation of the design. Synthesis tells the designer how many resources a de-
sign will require; if the target hardware lacks sufficient resources, the designer must return to the
design stage. Place-and-route is the second compilation step and is only run if synthesis completes
successfully.

In the place-and-route step, the structures generated in synthesis are mapped to physical com-
ponents on the FPGA. This process is device dependent and will fail if the required resources are
not available on the target device. Place-and-route is the most time consuming step of hardware
design, taking from thirty minutes to many hours depending on the complexity of the design and
the hardware specified. The output of this step is called a bitstream, a mapping of binary values
to specific blocks and connections on a device. If place-and-route or synthesis fails, the designer

12

Sign (s)
…

8-bit Exponent (e) 23-bit Significand (m)

0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0…

031931 23 2230

Figure 2.3: IEEE 754 Single-precision floating-point representation.

must return to the design step to adjust the design, as shown in Figure 2.2 on the previous page.
The final step of the process is the download of the bitstream onto hardware. The specifics of this
step depend on the particular hardware being used [10].

2.3 IEEE 754 Single-Precision Floating-Point Representation
Floating-point representation is a system used for representing real numbers. The name derives
from the fact that the location of the decimal point or radix point of the number being represented
is variable. A floating-point number is often known as a float. The floating-point format differs
from the fixed-point number representation system, in which the location of the decimal point is
constant. For example, integer representations of numbers are a fixed-point representation because
all numbers have exactly zero decimal places. The benefit of using floating-point representation is
its ability to represent a greater range of values, which is often important to scientific applications.
The IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754) is the industry standard for
the representation of floating-point values today [4]. It allows numbers to be represented as binary
strings of 1’s and 0’s, which is important for computing applications. There are four floating-
point representation formats defined by IEEE 754, of which only two are commonly used: single-
precision and double-precision. The IEEE 754 standard only requires that 32-bits be used in the
single-precision representation—other bits are optional. Single-precision numbers are adequate for
many scientific applications and the double-precision standard takes significantly more resources
to implement on FPGAs. Therefore, only the single-precision floating-point format was considered
in this project.

As mentioned before, the IEEE 754 single-precision format represents a real number using a
string of 1’s and 0’s. Figure 2.3 shows how the 32 bits of a single-precision number are broken
down. In the figure, a given floating-point number f can be represented as the equation

f = (−1)s×2(e−127)×m (2.1a)

In this equation, s = 1 when bit 31 = 1 and s = 0 when bit 31 = 0. The exponent field e is
adjusted by 127 to allow the exponent to range between −126 and 127. The values of e that would
represent exponents of −127 and 128 are instead used for special cases, as described later in this
section. The significand, m, always has a leading bit of 1 for normalized numbers, so only the

13

Table 2.1: Truth table comparing XOR and binary addition.
X Y X XOR Y X +Y

0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 (1)0

fractional part is stored in the floating-point format. By definition, 1 ≤ significand < 2. Consider
the example of the floating-point representation of the decimal value 5.0 . The number would
be represented as the binary string 010000001010000000000000000000002 using the IEEE 754
format. The description of the IEEE format, above, explains how the 32-bit binary string represents
a decimal number. The sign bit s is 0, so the number is positive. The exponent field e is 100000012,
which converts into 1× 27 + 1× 20 = 128 + 1 = 129. This means that the actual exponent is
129−127 = 2. Finally, the significand is (1.)010000000000000000000002, or 1+1×2−2 = 1.25.
After calculating these values, f can be solved f = 1×22×1.25 = 5.0.

In addition to representing real numbers, the IEEE 754 standard also provides codes for in-
finity and not-a-number, abbreviated NaN. These codes result from underflow or overflow, which
occur when f exceeds the range of the IEEE 754 standard, or from division by 0. In addition,
denormalized numbers are numbers where both the exponent e and the leading bit of the signif-
icand are 0. This format allows representation of the numbers in the range −1s× 0.frac× 2−126

where frac is the fractional part of the significand m. This representation only uses a portion of
the precision of the significand. These special cases of the IEEE 754 standard are necessary for
many applications. They are also significant to the implementation of floating-point operations on
hardware because any system that uses the IEEE 754 standard must devote logic to dealing with
these special cases [4].

2.4 Mathematical Operations with Floating-point Numbers
Floating-point arithmetic is considerably more taxing on computer systems than fixed-point arith-
metic. The additional cost in resources is not because of increased memory requirements—it is
much more difficult to multiply two 32-bit IEEE 754 floating-point numbers than it is to multiply
two 32-bit fixed-point numbers. The difficulty of performing floating-point arithmetic comes from
the complexity of its algorithms. This section contrasts the logic behind fixed-point and floating-
point multiplication as an example of this complexity.

Multiplying two fixed-point binary integers with digital logic is relatively simple. Multipli-
cation is repeated addition. For binary integers, addition follows almost the same rules as the
eXclusive OR (XOR) logic gate, as shown in table 2.1.

XOR returns 1 whenever exactly one of its inputs is 1. Line 4 of the table shows that when both
X and Y are 1, the sum is 0 with a carry bit of 1, depicted as (1). Resolution of the carry bit requires

14

OR
 0=X

 0=Y
0R =

X

Y
TRUE

FA
LSE

ss Y X XOR

mm YX ×

Round----mR

ee YX +

Normalize----

Generate
exception or
return error

mR

Overflow
OR

Underflow

TRUE

return error

R

FA
LSE

Figure 2.4: Floating-point multiplication algorithm.

additional logic. Even so, the gates required overall for binary addition are common in digital logic
and require few resources to implement. Fixed-point multiplication can be implemented by using
this algorithm repeatedly. Multiplication of floating-point numbers, on the other hand, requires
several stages and different types of logic. Figure 2.4 shows the required logic flow and is discussed
in the paragraphs below.

In the figure, the subscript s refers to the sign of a number, e to the exponent, and m to the
significand. The two inputs are X and Y and the output is R. The algorithm first checks whether
either X or Y is zero, in which case R is set to zero and the multiplication ends. Otherwise, the
resultant sign of R is computed by comparing the sign bits of X and Y using an XOR gate. Next, the
fractional parts of the significands of the inputs are multiplied, using a fixed-point multiplication
method. The result (Rm) must be rounded to fit within the single-precision standard. To calculate
the exponent of the result (Re) the exponents of the inputs are added. Also, if Rm is not between
1 and 2, as the IEEE format requires, it must be normalized. This requires a shift operation to
be performed on Rm and for Re to be incremented or decremented, as appropriate. Finally, the
result is checked for overflow and underflow, which would change the result to either infinity or

15

quadratic equation:

1 * - * * *

2 * * *

3 - -

4 -

5 + +

6 / final result / final result

ALAP ASAP

co
m

pu
ta

tio
na

lc
yc

le

2 4
2

b b ac
a

− + −

2, 4b b ac− − 2 4b ac−

×

× ×

×

× × ×

××
, , , 2b b b a c a− × × ×

4 ac×
2 4b ac−

2 4b b ac− + −2 4 , 2b b ac a− + − ×

2 4b ac−

4 ,ac b b× ×

a c×

Figure 2.5: Two scheduling techniques applied to a single task.

NaN. The example given demonstrates the potential complexities hardware designers face when
implementing floating-point arithmetic on reconfigurable logic.

2.5 Scheduling
Many techniques for implementing floating-point operations on FPGAs exist. Customizations to
data storage and allocation of resources have been made to increase floating-point performance. In
general, one customization important to any supercomputing application is scheduling. Schedul-
ing refers to the order, or priority, given to tasks in a multi-task system. There are many different
scheduling techniques, each offering unique benefits, and scheduling of resources in an FPGA is
especially important for fast performance. This section summarizes some basic scheduling tech-
niques relevant to this project.

Within the broad topic of scheduling, pipelining describes the processing of multiple stages
of the same operation simultaneously. As this is a relatively new field, much of the related ter-
minology is non-standard. The terminology used in this section is adopted from Hsu and Jeang’s
discussion of pipelining techniques [12] with some modifications made to reflect current common
usage. Figure 2.5 shows an example using the quadratic equation. It is an example of what will be
referred to as a task. Anything above the task level might be referred to as a system, application,
or problem.

16

In Figure 2.5 on the previous page, a task that computes the quadratic equation is split into
subtasks. In this simplified example, each subtask, such as the calculation a× c, requires only
one computational cycle to complete. Typically, subtasks such as mathematical operations using
floating-point numbers take multiple cycles to complete. The two most widely used schedul-
ing techniques are As-Soon-As-Possible (ASAP) scheduling and As-Late-As-Possible (ALAP)
scheduling. As Figure 2.5 on the preceding page illustrates, in ASAP scheduling, subtasks are
scheduled as soon as all the subtasks they are dependent upon have been scheduled. In contrast,
in ALAP scheduling, the schedule is created from last subtask to first. A subtask is scheduled as
soon as all subtasks dependent upon it have been scheduled [12]. ALAP and ASAP scheduling
are examples of preprocessing scheduling techniques because they only ensure that no conflicts in
dependencies will arise: they do not address the optimization of resource allocation or through-
put. For example, the ALAP schedule of Figure 2.5 on the previous page requires at least two
multipliers be implemented because two multiplications are scheduled for simultaneous execution
during computational cycle 2. In contrast, the ASAP schedule requires at least three multipliers be
implemented because three multiplications are scheduled during computational cycle 1. However,
both schedules require six total computational cycles to output an answer. Therefore, the ASAP
schedule is less efficient in this particular example because it requires more resources to produce
the same rate of throughput.

The modulo scheduling technique described by Rau and Glaser [13] measures the effectiveness
of a schedule by considering its throughput and the resources required to implement it. Modulo
scheduling is distinct from both ASAP and ALAP scheduling. It allows the calculation of the min-
imum initiation interval, i, that needs to separate the initiation of consecutive tasks. The minimum
initiation interval can be calculated as i = m× τ where m is the modulus and τ is the clock period.
In the example presented in Figure 2.6 on the following page, the computational cycles are with-
out units, so τ simplifies to 1. Ordinarily the modulus of a task is equal to the highest number of
operations any one functional unit must perform. In the quadratic example presented earlier, the
modulus is 4 because four multiplications are required to generate a solution. No other operation
is required more times than this in a single task.

A modulus of 4 means that the minimum initiation interval, i, of the task also equals 4, so one
task’s solution would be generated every four computational cycles. However, the modulus of a
task can be decreased by increasing the number of available functional units. If, for example, two
multipliers were implemented in the given example, each multiplier would only have to complete
two operations, so the modulus would decrease to 2. Figure 2.6 on the next page shows how an
m = 2 schedule never requires the use of more than two multipliers simultaneously. This would
also allow the minimum initiation to decrease to two computational cycles. If, however, it was
necessary to generate one solution every cycle, more multipliers would have to be implemented. In
the m = 1 schedule four multipliers are required starting at cycle 5. Implementing four multipliers
corresponds with a modulus of 1. Similarly, two subtraction units would be needed at this point.
The modulus could not descend below 2 unless a second such unit was implemented.

The two schedules of Figure 2.6 on the following page show the considerations that must be
taken into account when creating a pipelined schedule of a design. The m = 1 schedule would
allow the generation of one result every computational cycle. This would be a two-fold throughput

17

1 * *

2 * * * * *

3 - * - * * *

4 - * * - - * * *

5 + - * + - - * * *

6 / - * * / + - - * *

7 stage 1 + - stage 1 / + - -

8 / - stage 2 / + -

9 stage 2 + stage 3 / +

10 / stage 4 /

stage 3 stage 5

prologue

epilogue

m = 2 m = 1

co
m

pu
ta

tio
na

l c
yc

le ×
× ×

×

×
××

×

×
× ×

×

×
× ×

×

×
××

×

×
× ×

×

×
× ×

×

×
××

×

Figure 2.6: Modulo scheduling example

increase over the m = 2 schedule, which can only generate one result every two cycles. However,
implementing the m = 1 schedule would require three additional multiplier units and one additional
subtraction unit. This tradeoff between throughput and resource consumption is always on the
mind of a hardware designer, since floating-point operations can easily require more resources
than available, even in modern FPGAs.

18

Chapter 3

Related Work

3.1 Implementation of Floating-Point Operations on FPGAs
In 1994, early attempts to implement floating-point operations on FPGAs focused on implementing
a design capable of adding and multiplying two IEEE 754 single-precision floats. However, it was
discovered that the best design based on a comparison of space versus throughput required more
space than was available on a single device. As a result, the design was implemented across four
FPGAs [14]. The research’s conclusion was that FPGA technology needed to be improved before
floating-point could become feasible.

In 1996, implementations of an adder and a multiplier were made to fit onto a single device
each. However, the implementations suffered poor performance and accuracy compared to con-
ventional implementations because of resource constraints [15]. Two years later, an IEEE 754-
compliant floating-point adder and multiplier were separately implemented on a single FPGA
each. It was speculated at this point that floating-point operations on FPGAs could potentially
outperform conventional microprocessors in specific circumstances.

The space required to fully implement IEEE 754 floating-point units continued to represent a
bottleneck to development, despite the fact that hardware engineers operate at very low levels of
abstraction with FPGAs. As a result, several attempts were made to represent floating-point num-
bers and implement arithmetic operations without using the IEEE 754 standard. Some techniques
proved more effective than others. Floating-point to fixed-point conversion involves multiplying
a floating-point value by a large number and treating the result as an integer, performing integer
arithmetic, and then converting the resulting integer back into a float. This method was shown
to be slower and more resource-consuming than a comparable floating-point implementation [16].
By contrast, bit-width optimization, which allows the required accuracy to determine how many
bits are actually used to represent a float and only use that many bits, showed improvement over
the IEEE 754 implementation [17].

However, techniques that avoided using IEEE 754 were unable to match the standard’s pre-
cision, range, and treatment of non-real or out-of-bounds situations. Therefore, the industry
has for the most part adopted IEEE 754 as standard. The initial problems with implementing
IEEE 754 seemed to result from technological rather than methodological limitations. Underwood

19

made predictions of FPGA IEEE 754 floating-point performance, concluding that FPGAs would
show an order-of-magnitude performance advantage over comparable conventional processors by
2009 [18].

These predictions have led the industry to pursue technological development in high-perform-
ance reconfigurable computing (HPRC), a term used to describe traditional HPC using FPGAs. At
the same time, techniques for automating the FPGA customization process began to be explored.
The attempts to extract peak performance from FPGAs described in this section all involved signif-
icant knowledge of FPGA architecture and hardware design. Up to this point, designers have used
hardware description languages (HDLs) such as Verilog and Very High-Speed Integrated Circuit
HDL (VHDL) to describe their algorithms. This code is then compiled by an electronic design au-
tomation tool (EDA) into a physical design targeted to a specific device. However, the amount of
logic that can be placed on a single chip has grown to the point that very complex algorithms can be
implemented on a single FPGA, and so a need for a higher level of abstraction has developed [19].

Developing algorithms at a higher level of abstraction for hardware design also allows software
engineers to use FPGAs to accelerate their applications without having to learn an entirely new
design methodology. However, the field of HPRC is still in the developmental stages, and high-
level languages in particular have a long way to go. A wide range of commercial and open-source
HLLs has been developed. Some are easier to use than others, but none has become standard across
the industry [3].

3.2 Implementation of the MODIS System
This project applied FPGA floating-point acceleration to a real-world scientific application. This
technique was chosen for two reasons. First, it was the intent of this project to be useful to other
researchers interested in using FPGAs for software acceleration, but having little background in
HPRC, rather than to hardware designers already familiar with the field. Second, a substantial
amount of research into HPC and HPRC implementations of the chosen application has already
been done, and a cache of data is available for comparison purposes.

The application was an optical ray-tracing simulation of NASA’s Moderate Resolution Imaging
Spectroradiometer (MODIS). In the spectroradiometer, light from the sun passes through multiple
optical elements before reaching a detector. To simulate this system, each interaction of a ray
of light with an optical element must be simulated. This interaction entails several important
calculations, of which two were of primary focus in this project: (1) finding the point at which a
ray intersects an optical surface and (2) finding the direction of the ray’s travel after interacting
with that surface [20]. These steps can be simplified into a system of floating-point equations with
a constant number of inputs and outputs.

The MODIS simulation was initially implemented using Fortran on a Digital Equipment Cor-
poration (since bought by Hewlett-Packard) Alpha 3000 series model 800 computer. The slow
performance of this first program prompted interest in methods to speed up processing. Cameron
et al. began work in 2002 on implementing the MODIS simulation on multiple digital-signal-
processing chips. A system functionally comparable to the original Fortran model was written in

20

500
600
700
800
900

du
p,

 s

Measured Performance vs. Amdahl's Law

MODIS
simulation

0
100
200
300
400

0 200 400 600 800

sp
ee

d

number of processors, n

rs = 0.01
rs = 0.1

Figure 3.1: Amdahl’s law versus measured performance.

the C programming language. The complete simulation was implemented and tested successfully.
Initial estimates were that using digital signal processors (DSPs) would show a linear relationship
between the number of DSPs used and speedup [21]. This result was confirmed using eight DSPs
simultaneously running a complete MODIS simulation [22].

Using the Message Passing Interface (MPI), the MODIS simulation was subsequently imple-
mented on the Naval Research Laboratory’s massively parallel Cray XD1. Turn-around-time data
was collected for using a single processor and for using multiple processors in parallel [8]. Data
points were measured for varying numbers of processors in the range from 1 to 839. These data
are reproduced in Figure 3.1 as the line labeled "MODIS simulation".

The performance of parallel computing applications is often measured in speedup, which is the
ratio between original throughput and improved throughput, or s = ρ/ρreference. Figure 3.1 graphs
Amdahl’s Law, which shows that speedup s can be increased by implementing a parallel application
using additional processors. In this specific case, s = ρn/ρ1 where ρ1 refers to the throughput
achieved using one processor and ρn refers to the throughput achieved using n processors. It also
shows that speedup is only maximized when rs = 0, where rs is the portion of a calculation that
must be performed sequentially [23]. The speedup s can be measured using throughput, but s can
also be calculated using the formula:

s =
1

rs + rp
n

(3.1a)

where s is speedup, rs is the serial component of the process or calculation being implemented, rp
is the parallel component, and n is the number of processors being used for processing. It is also
important to note that by definition, rs = 1− rp.

21

This calculation of s allows a designer to predict whether it would be worthwhile to implement a
given application using hardware that benefits parallelism. Using multiple processors, as discussed
in section 1 on page 7, is one way to implement HPC. To gauge cost versus benefit, the speedup
gained would be compared to the extra time, money, and labor required to implement a given
application on multiple processors.

The throughput measured when implementing the MODIS system on multiple conventional
processors is plotted against examples of Amdahl’s Law at different rs values in Figure 3.1 on the
preceding page. Amdahl’s Law was used to estimate the components rs and rp for the MODIS
simulation system. The graph shows that the MODIS simulation had a very low rs and so an rp
value very close to 1. Therefore, it was concluded that the MODIS simulation would be a good
candidate for acceleration using FPGAs, since FPGAs are best suited to highly parallel, data-
intensive applications.

The throughput ρ1 of the MODIS simulation when implemented using a single processor was
6.95×106 rays per second. Although the simulation ran very quickly using the Cray’s conventional
processors, it did not utilize any of the supercomputer’s FPGA processing capabilities [8].

Cameron implemented the entire MODIS simulation using the Cray XD1’s Advanced Micro
Devices Opteron 275 processors. However, such a complex system was not likely to fit on a single
FPGA. Instead, only the first two steps of the simulation were implemented on FPGA’s in this
project. The first step was the calculation of the point where a ray intersected a conicoid surface.
The second step was the calculation of the vector normal to the surface at the point of intersection.
These steps are referred to as the ray-intersection calculation and the normal-vector calculation,
respectively, for the rest of this report. These two calculations are further described in section 4.3
on page 26.

3.3 The Trident Compiler
This project initially selected the Trident compiler for implementation of the normal-vector cal-
culation. The compiler uses a novel approach to convert sequential C code into hardware design
language code. It first compiles the C code into an intermediary representation. It then parses this
representation to automatically extract parallelisms. Finally, it schedules operations and produces
VHDL code based on its analysis of parallelisms.

According to its documentation, the Trident compiler was designed to support ASAP, ALAP,
and modulo scheduling (see section 2.5 on page 15 for a description of these methods) among
other scheduling methods [24]. To test these claims, the source code of the compiler was modified
to implement floating-point arithmetic using Floating-Point Operator v2.0, packaged with Xilinx
Integrated Synthesis Environment (ISE) version 8.1i.

Using this modified version of Trident, a simple single-precision floating-point multiplier was
implemented and functional accuracy was identified with certainty. However, the scheduling tech-
nique being implemented could not be confirmed, since only one arithmetic operation was imple-
mented. Subsequently, the normal-vector calculation was implemented using Trident. However, a
simulation of the resulting VHDL code showed anomalies in scheduling. The conclusion was that

22

that modulo scheduling was not implemented.
Without proper scheduling, the VHDL generated by Trident could not have used the resources

of the FPGA adequately. Attempts to contact the developers of Trident to address these issues were
unsuccessful. As a result, the focus of this project shifted to a different tool—Mitrion-C.

3.4 Previous Use of Mitrion-C
High-level abstraction tools for hardware design serve two purposes: (1) they simplify the ex-
pression of large, complex algorithms, and (2) they simplify hardware design for researchers only
familiar with software development. Mitrion-C is a high-level language that is part of the Mitrion
Integrated Development Environment (IDE). The function of both Mitrion-C and the Mitrion IDE
are further discussed in section 4.1 on the next page

Because of its relatively recent development, little work has been implemented using Mitrion-
C. All of the significant related work was published in 2007. Koo et al. compared FPGA per-
formance using Mitrion-C to a software implementation using ANSI-C on the Silicon Graphics,
Inc. (SGI) Reconfigurable Application Specific Computing (RASC) RC100 platform, using four
Virtex-4 LX200 FPGAs. In the case of an MRI brain scan analysis algorithm, overall speedup was
3.6×, but the speedup of the portion implemented using FPGAs was 11.6× [25].

Koo et al. also used Mitrion-C to implement two other algorithms—the first was a floating-
point dense matrix-vector multiplication and the second was an algorithm to simulate solvating
protein in water. Comparing the implementation on a single FPGA versus implementation on a
single 1.5 GHz Itanium 2 sequential processor, maximum speedup for the first algorithm was 21×
and for the second was 10×. Speedup was also shown to increase significantly when using multiple
FPGAs [26].

Kindratenko et al. measured speedup comparing the performance of two SGI RC100 FPGAs
to that of two 1.4 GHz Intel Itanium 2 sequential processors. Mitrion-C was used to generate
the FPGA hardware design. The algorithm concerned the calculation of the two-point correlation
function, used to analyze the clustering of extragalactic objects [27]. In the best-case scenario,
speedup was measured to be 9.5× [28]. In each of the three reports mentioned above, resource
consumption on the target FPGAs was reported and varied from case to case. No correlation
between resource consumption and speedup was made.

Speedup using FPGAs was verified by several independent projects, but the benefit of using
high-level languages over VHDL or other traditional HDL techniques was not addressed in these
reports. El-Araby et al. sought to quantify the "comparative productivity" of various high-level
abstraction tools compared with traditional HDL design. Mitrion-C ranked poorly according to the
metrics of efficiency and ease-of-use and was also only able to achieve about 60% of the throughput
of a manually-coded VHDL solution. However, none of the high-level tools proved to be clearly
superior in each of the four applications implemented [29].

Most research using Mitrion-C thus far has focused on speedup. No reports have quantified the
relationship between speedup and power consumption. However, Mitrionics AB has repeatedly
marketed the Mitrion platform as a low-power solution [30].

23

Chapter 4

Implementation

4.1 The Mitrion Platform

FPGA

Design Simulation Synthesis Place and
Route Download

Hardware Design Language
Or High-Level Abstraction Tool

Device Constraints

Figure 4.1: Hardware design flow.

The high-level language Mitrion-C is part of the Mitrion Integrated Development Environment
(IDE). It is a “C-like” language in that it uses syntax similar to that of the American National
Standards Institute’s standard for C (ANSI-C). Mitrion-C gives designers the ability to focus on the
logic of an algorithm rather than hardware specifics. Parallelism is expressed using data structures
and loop constructs. This system gives Mitrion-C the feel of a software language, but allows
explicit expression of parallelism as well. The Mitrion IDE converts Mitrion-C programs into
VHDL, which can then be synthesized and placed-and-routed using the Xilinx ISE [31].

Generic hardware design flow was first discussed in section 2.2 on page 10. Figure 2.2 on
page 11 is reproduced here as figure 4.1 for convenience. Figure 4.2 on the next page illustrates
the hardware design flow specific to the implementation using the Mitrion IDE. On the surface,
it appears that little difference exists between the two illustrations. In fact, all the same steps are
present, since hardware design using Mitrion-C is still hardware design, despite the user interface
allowing a higher level of abstraction. However, the Mitrion IDE does offer some benefits over

24

Mitrion IDE Xilinx ISE

FPGA

Mitrion-C

Simulation

Place and
Route Download

Simulation

Synthesis Route

Device Constraints

Figure 4.2: Mitrion-C Design Flow.

hardware design using VHDL.
Synthesis of VHDL code can take several minutes to complete and functional simulation is

only possible after code has been synthesized. In addition, synthesis will complete successfully
even if it is unlikely a design will fit on the target FPGA. In contrast, the Mitrion IDE includes
a functional simulator that produces a graphic representation of an algorithm in moments. This
simulator will also estimate the amount of resources a design is likely to require.

In sum, the Mitrion IDE allows the user to spend the majority of development time between
code development and simulation, as shown by the small loop in figure 4.2. No feedback is needed
after synthesis because the Mitrion-C compiler creates the VHDL code automatically. The feed-
back line after place-and-route is dashed to show that the Mitrion-C compiler will automatically
check to make sure a design will most likely fit on the target hardware. This check reduces the
number of failures at the place-and-route step significantly.

Mitrion-C and the Mitrion IDE are both part of the Mitrion Software Development Kit (SDK).
The Mitrion SDK also contains a graphical simulation tool and libraries that allow a host computer
to interface with the Mitrion Virtual Processor (MVP). This processor is the core of the Mitrion
Platform. It is a reconfigurable software architecture that runs Mitrion-C code. For each unique
application, the Mitrion SDK creates a new virtual processor tailored to the targeted FPGA and
optimized for the application [31]. Mitrion-C code defines the customization of each Mitrion Vir-
tual Processor. The use of this intermediary step explains how the user is able to quickly simulate
and debug Mitrion-C code: the same virtual processor that can be simulated with the simulator
included in the Mitrion SDK can also be loaded directly onto an FPGA.

25

Chassis

Compute Node

AMD
Opteron

275

AMD
Opteron

275

Active
Management

System

QDR SRAMsH
os

t M
em

or
y

Virtex-II
Pro

RapidArray Interconnect System

Figure 4.3: Cray XD1 architecture.

4.2 The Cray XD1 Architecture
The Cray XD1 supercomputer is designed to permit high-performance reconfigurable computing
(HPRC). Figure 4.3 illustrates the components most significant to this report. Each chassis of a
Cray XD1 contains up to 12 AMD Opteron 275 sequential processors, distributed either two or four
to each compute node. The research collected in this report used nodes containing two Opterons.

Figure 4.4 on the following page illustrates the memory connections of the Cray XD1. The
Opterons have access to host memory, Synchronous Dynamic Random Access Memory (SDRAM)
like that found in most personal computers. The Virtex-II Pro FPGAs, however, do not have direct
access to this memory. Connected to the FPGAs are four banks of Quad-Data Rate (QDR) Static
Random Access Memories (SRAMs), a cache to which the FPGAs have direct access. Each QDR
SRAM holds 4MB of memory for a total of cache size of 16MB.

Each memory bus is 64 bits wide, capable of transmitting two 32-bit single-precision floating-
point numbers at once. The QDR SRAMs are only accessible to the Opterons through the RapidAr-
ray Interconnect System, which is designed to allow communication between FPGA and Opteron
with high bandwidth and low latency. The RapidArray Interconnect System also allows the pro-
cessors of each computing node to communicate with other nodes, but this feature was not used in
this project [1].

Although it would seem that access to the QDR SRAMs would require complex C code on
the Opterons, Cray created an interface that simplifies the process. The user is given functions that
map the Opteron’s virtual address space directly into the QDR SRAMs. Therefore, the programmer

26

AMD
Opteron

275 QDR SRAMs
“Fast”

12.8 GB/s

RapidArray
Interconnect System

Virtex-II
Pro

(Total)

3.2 GB/s

2 GB/s

Figure 4.4: Cray XD1 memory connections.

only needs to interact with normal ANSI-C arrays to write to and read from the FPGA’s memory.
Figure 4.5 on the next page illustrates how the programmer can think of the interaction between
Opteron and Virtex-II Pro.

4.3 Description of the Calculations Implemented
As discussed in section 3.2 on page 19, two steps of the MODIS simulation—the ray-intersection
calculation and the normal-vector calculation—were implemented in this project. The inputs to
the ray-intersection calculation were the point of origin p0 (given expressed using the Cartesian
coordinates x0, y0, and z0), the initial direction vector â0 (given as the direction cosines L, M, and
N), the curvature c of the conicoid and the conic constant k, which depends upon the conicoid’s
type, as shown in table 4.1 on the next page [32].

The output was the point of intersection pi (given as x1, y1, and z1). Figure 4.6 on page 28
illustrates the calculation. In the figure, the conic surface represents a cross-section of a conicoid.
All the points in this cross-section have coordinates with x = 0.

The equations with which pi is calculated are listed in section 4.4.2 on page 32. Once the
intersection of a ray with a conic surface has been found, it can be used as the originating point p0
for the next interaction with an optical element. However, the direction of the resultant ray must
first be found. Figure 4.6 on page 28 illustrates the calculation.

27

ANSI-C Host Program Mitrion-C Program

Prepare Inputs Read Inputs

Inputs Inputs

Run FPGA
(Loop)

Floating-Point
Calculations

0 1

2 3

FPGA Memories
(QDR SRAMs)

Display Outputs

Time
Measurement Write OutputsOutputs

(QDR SRAMs)

Outputsp

Host SDRAM

Figure 4.5: Data flow between host and FPGA programs.

Table 4.1: Conic constants and conicoid types.
Conic Constant Conicoid

k > 0 oblate ellipsoid
k = 0 sphere

−1 < k < 0 prolate ellipsoid
k =−1 paraboloid
k <−1 hyperboloid

28

yp0 (x0,y0,z0)
âN

pr

θ1

θ1

â0 âreflected

x

(0,0,0)

(x,y,z)
θ2

pi (x1,y1,z1)

ârefracted

Conic Surface

Figure 4.6: Interaction of an incident ray with a conic surface.

After interaction with an optical element, a ray may either be reflected or refracted. The cal-
culation of the ray’s path after either reflection or refraction is dependent upon the value of the
vector, âN , normal to the conic surface at the point of intersection pi. In the case of reflection, the
angle θ1 the original ray makes with âN is equal to the angle between âN and the unit vector of the
resultant ray âreflected.

In the case of refraction, the direction of the resultant ray ârefracted can be found by solving
Snell’s equation

n1 sinθ1 = n2 sinθ2 (4.1a)

or

θ2 = arcsin
n1 sinθ1

n2
(4.2a)

where both θ1 and θ2 are given relative to âN . The calculation of âN depends on the x and y co-
ordinates at the point of intersection. These coordinates result from the ray-intersection calculation
and are provided as inputs to the normal-vector calculation. The approach taken with this prob-
lem was to use a different coordinate system with its origin at the vertex of each optical element.
Therefore, the origin (0,0,0) represents the vertex of the conicoid.

29

The normal-vector calculation takes as inputs xi, yi, curvature c, and u—a parameter derived
from c and the conic constant k. The variable zi is not needed to calculate the normal vector. The
outputs of the calculation are the three components of the resultant normal vector âN (f , f dx, and
f dy). The remaining equations of the normal-vector calculation are listed in section 4.4.1.

4.4 The FPGA Design

4.4.1 Implementation of the Normal-Vector Calculation
The hardware designs loaded onto the Virtex-II Pro FPGAs were created using Mitrion-C. Both
the Mitrion-C program for the ray-intersection calculation and the normal-vector calculation used
four functions. The normal-vector calculation is discussed first because it is functionally simpler.
The source code can be found in appendix B on page 55.

The optical ray-tracing procedure of the normal-vector calculation was explained in section 4.3
on page 26. For the purposes of implementation, the process simplifies into a system of arithmetic
operations, represented here:

v = u(x2 + y2) (4.3a)

a =
√

1− v (4.3b)
p = 1+a (4.3c)
q = ap (4.3d)
r = pq (4.3e)
s = 2q (4.3f)

w = c/r (4.3g)
b = w(s+ v) (4.3h)

dx = bx (4.3i)
dy = by (4.3j)

e =
√

dx2 +dy2 +1 (4.3k)
f = 1/e (4.3l)

f dx = f dx (4.3m)
f dy = f dy (4.3n)
âN = (f dx, f dy, f) (4.3o)

The problem requires 5 additions, 1 subtraction, 13 multiplications, 2 divisions, and 2 square
roots. The addition of constants was implemented as a floating-point operation to ensure precision.
The numbers of floating-point units implemented that are reported here reflect the output of the
simulator packaged with Mitrion-C.

The read_inputs() function reads one 64-bit word (or string of bits) from each of two QDR
SRAMs each computational cycle. Since only four inputs were needed for the normal-vector

30

From Host Program

x y u c

0 31 32 63 0 31 32 63

QDR SRAM 0 QDR SRAM 1

To FPGA
Input

0 31 32 630 31 32 63

QDR SRAM 3QDR SRAM 2

From FPGA

p

Output

0 31 32 630 31 32 63

f fdx fdy emptyTo Host Program

Figure 4.7: Detailed data flow between normal-vector calculation host and FPGA programs.

calculation, QDR SRAMs 0 and 1 were used for input. The reading of inputs from the QDR
SRAMs assumes that data is available, that is, that appropriately formatted floating-point inputs
have been stored in the memory in the order to be read. This requirement must be satisfied by the
host program run on the Opteron. The host program source code for the normal-vector calculation
can be found in appendix D on page 67.

The host code associated an ANSI-C array with memory addresses on the QDR SRAMs using
the function mitrion_processor_reg_buffer. These virtual buffers must be declared as a data type
and the buffers’ memory addresses (as they appear to the host program) are defined by the size of
the data type. Since ANSI-C natively supports 32-bit single-precision floating-point representation
as floats, the buffers were simply declared as floats.

Data was written by the host program as two 32-bits floats per memory. However, in Mitrion-C
the QDR SRAMs may only be read one 64-bit word at a time. The Mitrion-C program was written
to read four 32-bit floats as two 64-bit words, split that word into four 32-bit words, and then
associate those words with the floating-point format in Mitrion-C. Only then could floating-point
arithmetic be correctly implemented on the original four floats. Figure 4.7 illustrates this process,
using the normal-vector calculation as an example.

Arithmetic was implemented in the calc_outputs() function. Mitrion-C’s syntax for arithmetic
can be used as if it were sequential ANSI-C. The Mitrion compiler removes the need for the
programmer to understand scheduling, floating-point units, or other hardware considerations.

The outputs of calc_outputs() were fed to the write_outputs() function, which wrote two input
floating-point numbers to a QDR SRAM. It first had to pack the floating-point numbers into 64-
bit words, reversing the process implemented in read_inputs(). Since only three outputs were

31

Figure 4.8: Mitrion-C simulation of normal-vector calculation.

generated, the floating-point value 0.0 was written into the second half of QDR SRAM 3 because
the 32-bit output could not be written into a 64-bit space. This choice made no difference to
throughput since it always takes one computational cycle to perform a memory write, regardless
of the value of the actual data.

The three functions read_inputs(), calc_outputs(), and write_outputs() were controlled by the
main() function. The three functions were implemented in foreach loops. In Mitrion-C, when
this type of loop is implemented over a list of values, the compiler automatically pipelines the
code within and executes it in parallel. Further explanation of pipelining and scheduling is pro-
vided in section 2.5 on page 15. Figure 4.8 highlights the data dependencies in the normal-vector
implementation. Data flows from top to bottom in the figure, but data can be transferred as soon
as it is read— that is, the calc_outputs() function does not need for every sample to be read by
read_inputs() before it can begin arithmetic on the inputs.

As mentioned before, the size of each QDR SRAM available to the FPGA was 4 MB. There-
fore, the number samples that could be loaded into the memory can be found using:

Samples = 2SRAMs× 4 MB
SRAM

× 1048576bits
MB

× 1float
32bits

× 1sample
4floats

= 528244 = (219) (4.4a)

The FPGA program was looped by the host program 2048 (211) times, for a total of 211×219 =
1073741824(230) samples, in order to simulate the calculation of a large dataset. The data were
generated by the host program and reflected realistic MODIS simulation inputs. Elapsed time was
measured using the clock() function of ANSI-C.

32

Figure 4.9: Mitrion-C simulation of ray-intersection calculation.

4.4.2 Implementation of the Ray-Intersection Calculation
The primary difference between the ray-intersection calculation and the normal-vector calculation
was the fact that the latter calculation requires eight inputs.

The ray-intersection calculation can be simplified into a system of floating point equations,
shown below.

g = N− c
(
x0L+ y0M +(k +1.0)z0N

)
(4.5a)

h = c
(
x2

0 + y2
0 +(k +1.0)z2

0
)
−2z0 (4.5b)

f = c(1+ kN2) (4.5c)

u =
h

g+
√

g2− f h
(4.5d)

x1 = uL+ x0 (4.5e)
y1 = uM + y0 (4.5f)
z1 = uN + z0 (4.5g)

This problem therefore requires 11 floating-point additions, 3 subtractions, 19 multiplications,
1 division, and 1 square root. The addition of constants was implemented as a floating-point
operation to ensure precision. The numbers of floating-point units implemented reported here
reflect the output of the simulator packaged with Mitrion-C.

The FPGA program is listed in appendix A on page 50. Since the FPGA’s QDR SRAMs can
only hold 4 MB of data each, the number of samples that could be loaded into two memories was
half the number that could be stored in the normal-vector calculation (see equation 4.4a). Since

33

the ray-intersection calculation requires eight inputs, consisting of 8× 32 = 256 bits, it would
be impossible to read all eight inputs from just two 64-bit memories (a total of 128 bits) in one
computational cycle. There were two options to address this issue: either use four memories for
input, or continue to use two SRAMs, but allow more computational time to read the inputs.

Mitrion-C has built into it functions that ensure that a read or write is not attempted of a memory
until that memory reports that it is in the ready state. Therefore, it should have been possible to
read eight inputs from four memories and simply write the three outputs to QDR SRAMs 2 and
3, overwriting the original inputs. This approach may have worked, but continuing to use only
two memories presented a chance to analyze the effects of large numbers of inputs on FPGA
processing. There are undoubtedly many applications that would have required more inputs than
even four memories could have provided in a single computational cycle. Using two computational
cycles would provide valuable insight on the effects on throughput in such a case. Therefore,
the eight inputs were stored in QDR SRAMs 0 and 1 in a staggered fashion and the Mitrion-C
function read_inputs() required two computational cycles to execute. The effects on throughput
are discussed in section 5.2 on page 38.

The Mitrion simulation of the ray-intersection calculation is presented in figure 4.9 on the
preceding page. The notable difference between this figure and figure 4.8 on page 31 is the fact
that the read_inputs() function of the ray-intersection calculation is connected to calc_outputs()
with eight data buses rather than four, which signifies that twice the number of inputs are passed
from one function to the next. The fact that the ray-intersection calculation is encapsulated in a
single foreachloop rather than one loop for each function has no functional significance. The
organization of the ray-intersection calculation’s host program did not differ significantly from
the normal-vector calculation’s host program. The host program code is listed in appendix C on
page 60

4.5 The Sequential Program
This project set out to compare throughput and power consumption between FPGAs and traditional
processors. ANSI-C running on the Opteron 275s was used as the traditional implementation in
this project. The GNU-C compiler was used to compile the code and the flag -O was used because
it instructs the compiler to turn on forms of optimization that do not require any trade-off between
speed and space.

The code of the sequential implementations of the ray-intersection calculation and the normal-
vector calculation are listed in appendix E on page 74 and F on page 79, respectively. The se-
quential implementations were designed to mirror the host program implementations as much as
possible. Data generation was identical. Time measurements using the clock() function only mea-
sured the time when actual arithmetic calculations were made. For the sequential programs as well
as the host programs the number of samples calculated and the number of times the calculation
portion of the program was looped varied in order to ensure that in each case, the time required to
process 230 samples was measured.

Figure 4.10 on the next page contrasts the dataflow of the sequential implementation to that of

34

the FPGA implementation, which uses both an FPGA design and an ANSI-C host program (see
figure 4.5 on page 27). The dataflow of the sequential program is clearly much simpler, since
the sequential program only interacts with the host memory, while the host program of the FPGA
implementation must move data between both the host memory and the FPGA memory. However,
the delays incurred by data transfers in the FPGA implementation are negligible compared to
overall throughput.

Inputs

ANSI-C Sequential Program

Prepare Inputs

Floating Point
Inputs

Time

Floating-Point
Calculations (Loop) Outputs

Host SDRAM

Display Outputs

Time
Measurement

Outputs

Figure 4.10: Data flow in sequential program.

35

Chapter 5

Results

This project sought to measure the cost versus benefit of using reconfigurable over conventional
processors for HPC. The primary concern for most users of HPC is throughput. Most research
comparing FPGAs to CPUs focus on this aspect of performance. However, modern HPC systems
generate significant amounts of power and heat. Overheating can even force a system to shut off
or reset, which may cause researchers to lose data or have to reprogram experiments. Power and
heat are also important to field applications of FPGA processing, where available power cooling
abilities may be limited.

Throughput was measured using the clock() function of ANSI-C. The measurements were
straightforward and are further discussed in section 5.2 on page 38. Power and heat measurements
were taken using the Cray XD1’s built-in Active Management System (see 4.3 on page 25), a mon-
itoring and control tool for system administrators and end users [33]. This tool was able to isolate
and accurately measure power delivered to both the Opteron and FPGA, but the heat resulting
could not be isolated with the instrumentation provided with the system. As a result the costs ver-
sus benefit analysis achieved in this project compared power to throughput. Resource consumption
by the FPGA implementations was also measured, but was not part of the cost-benefit analysis, as
explained below, although it would be a suitable focus of further research. In addition, no attempt
was made to measure the time taken to implement the calculations, because any such measurement
would have required a skilled user of Mitrion-C.

5.1 Resource Consumption
One cost commonly associated with the use of FPGAs is resource consumption. Since FPGAs
are reconfigurable, each design that is implemented on one uses different onboard components to
implement logic. One part of hardware design, discussed in section 2.2 on page 10, is the loop back
to code design after synthesis. VHDL programmers want to maximize the resource consumption
of their designs in order to achieve maximum throughput given a set of hardware constraints. The
synthesis step of hardware design produces a detailed analysis of expected resource allocation,
which the hardware designer uses to make changes to a design.

36

1-Cycle Square Root

2-Cycle Division

Figure 5.1: Mitrion-C simulation of calc_ouputs() function of ray-intersection simulation.

37

Table 5.1: Ray-intersection resource consumption.
Resource (total) Implemented (Percent)

Slices (23 616) 19 044 (81 %)
Flip Flops (47 232) 26 508 (56 %)

4-input LUTs (47 232) 26 250 (56 %)
Block RAMs (232) 25 (11 %)

Multipliers (232 18x18) 72 (31 %)

Table 5.2: Normal-vector resource consumption.
Resource (total) Implemented (Percent)

Slices (23 616) 16 571 (70 %)
Flip Flops (47 232) 21 670 (46 %)

4-input LUTs (47 232) 20 466 (43 %)
Block RAMs (232) 23 (10 %)

Multipliers (232 18x18) 48 (21 %)

Although Mitrion-C allows explicit definition of parallelism, it does not permit the same fine-
grained control over a design’s resource use as a traditional HDL does. section 2.5 on page 15
describes the many considerations that must be taken into account when a hardware designer cre-
ates a design. In Mitrion-C, scheduling is automated and opaque to the user. Mitrion’s simulator
shows when arithmetic operations are begun, giving an indication of how scheduling is done. In
figure 5.1 on the previous page, each interval of space in the vertical direction corresponds with a
unit of time, that is, one computational cycle. Analysis of this flow shows that the Mitrion com-
piler uses As-Late-As-Possible scheduling, described in section 2.5 on page 15 and illustrated in
figure 2.5 on page 15. However, the simulation output also seems to indicate that with the exception
of division, every arithmetic operator can be completed in just one computational cycle. Experi-
ence with other floating-point operator implementations makes it seem unlikely this is actually the
case.

The simulator output also shows no use of modulo scheduling, described in section 2.5 on
page 15. Implementation of modulo scheduling would lead to multiple numbers of floating-point
units being implemented based on need. However, the simulation output indicates that one floating-
point operator was implemented for each operation completed. The ability of the Mitrion Virtual
Processor to generate one output per computational cycle to a complex problem such as the ray-
intersection calculation using the schedule that is illustrated in figure 5.1 on the previous page
seems highly unlikely. It seems more probable that the simulator merely produces a simple ALAP-
scheduled representation of the logic for debugging purposes, and that more complex scheduling
and optimization is not visible to the user. The VHDL code the Mitrion compiler generates is
complex and not designed to be analyzed by the end user. Attempts to do so were unsuccessful.

38

Table 5.3: Ray-intersection throughput measurements.
Opteron 275 Virtex-II Pro

Rays Traced 1 073 741 824
Time (s) 219.54 21.49
Throughput (rays/s) 4.891×106 4.996×107

Speedup — 10.21×
— 921%

Tables 5.1 on the preceding page and 5.2 on the previous page report the resources consumed by
the ray-intersection and normal-vector calculations, respectively. Xilinx defines slices as the basic
configurable logic unit within an FPGA. Each one contains two 4-input lookup tables (LUTs) and
two flip-flops. The lookup tables are used to implement simple logic equations and the flip-flops
are used to hold the outputs of the lookup tables when that is required. In both designs, well over
50% of available slices were used by the designs. It was therefore not possible using Mitrion-C to
implement multiple instances of the designs in order to obtain greater throughput because doing so
would have required twice as many slices.

5.2 Throughput Measurement
As discussed in section 4.4 on page 29, the FPGA implementation of the ray-intersection calcula-
tion could process 262 144 samples before needing new inputs while the normal-vector calculation
could process 524 288 samples. The ray-intersection calculation was iterated by the host program
8192 times and the normal-vector calculation 4096 times. Each time measurement therefore mea-
sured the time needed to process 1 073 741 824=230 rays.

The time functions built into ANSI-C were used for time measurement. The clock() function
returns the system time given in clock ticks relative to an arbitrary reference time. The time was
measured before starting the FPGA program and again once all iterations were complete. By
subtracting the start value from the end value and dividing by the macro CLOCKS_PER_SEC, which
stores the number of clock ticks per second measured by clock(), time elapsed in seconds could
be calculated. For the sequential implementations of the two calculations, the time was measured
before the loop that encapsulated the arithmetic portion of the program began and again after it
completed. The results of the measurements are presented in tables 5.3 and 5.4 on the following
page.

The maximum amount of speedup achieved—10.67×— seemed reasonable compared to past
research. The results also seemed to show that the throughput indicated during simulation—that is,
one full calculation delivered per cycle in the case of the normal-vector calculation—was correctly
implemented. The Mitrion Virtual Processor has been shown to run on the Cray XD1 at 100 MHz
[26]. Therefore, the minimum time t required to complete 1 073 741 824 calculations can be found
using the equation:

39

Table 5.4: Normal-vector throughput measurements.
Opteron 275 Virtex-II Pro

Rays Traced 1 073 741 824
Time (s) 114.79 10.75
Throughput (rays/s) 9.354×106 9.988×107

Speedup — 10.67×
— 967%

t =
1s

100×106 clock cycles
× 1clock cycle

calculation
×1073741824calculations = 10.74s (5.1a)

As discussed in section 4.4.2 on page 32, the FPGA implementation of the ray-intersection
calculation required two clock cycles for each calculation. If equation 5.1a were applied to the
ray-intersection calculation, the minimum time t would equal 21.47 seconds. The expected value
of elapsed time for both the normal-vector and ray-intersection calculations were essentially equal
to the measured values listed in tables 5.4 and 5.3 on the previous page. This result supports the
likelihood that modulo scheduling is automatically implemented by the Mitrion compiler because
only a schedule with a modulus of one could have achieved maximum theoretical throughput.

The fact that the ray-intersection calculation achieved the same speedup as the normal-vector
calculation was surprising. As described in section 5.3 on the preceding page, the implementation
of the ray-intersection calculation only used two QDR SRAMs, though theoretically it could have
used four. The fact that the throughput of the sequential program decreased about the same amount
as the FPGA implementation seems to indicate that the sequential program was also limited by
memory bandwidth. However, the results suggest that the FPGA implementation should have been
able to double its throughput had four memories been used instead of two. If such a implementation
could be developed, a greater than 20× speedup seems possible.

5.3 Power Measurement
Power consumption was measured using Cray’s Hardware Supervisory Subsystem (HSS) software,
which runs on the management processor of each Cray XD1 chassis and is designed to monitor the
health of the system [33]. The HSS reports the voltage supplied to the regulators of each node and
the current supplied by the regulators to individual components of the node, including the Opterons
and FPGAs. Because both the Opterons and FPGAs draw power even when idle, monitoring total
power (in watts) was of greatest interest. For this reason power measurements were taken both on
nodes with an FPGA present and on nodes without. In all, five power levels for each of the two
calculations implemented were measured:

1. a node without an FPGA while idle,

40

2. a node without an FPGA while running the sequential implementation,

3. a node with an FPGA while idle,

4. a node with an FPGA while running the sequential implementation, and

5. a node with an FPGA while running the FPGA implementation.

Table 5.5: Ray-intersection power measurements.
Node Type Implementation Total Power (watts)

No FPGA Idle 102.65
FPGA Idle 130.94

No FPGA Sequential Only 110.87
FPGA Sequential Only 139.57
FPGA FPGA 142.87

Table 5.6: Normal-vector power measurements.
Node Type Implementation Total Power (watts)

No FPGA Sequential Only 111.84
FPGA Sequential Only 139.84
FPGA FPGA 143.66

Three sets of 100 samples each were measured at 2 s intervals. The full datasets are displayed
in figures 5.2 on the next page through 5.9 on page 45. By comparing the mean values and standard
deviations between sets, it was found that power was independent of time, that is, stationary at the
scale of the measurements. Tables 5.5 and 5.6 present the mean values of the findings across all
300 samples in each case. Idle power measurements are omitted from Table 5.6 because they were
equal to the values presented in Table 5.5.

In the case of the ray-intersection calculation, the Virtex-II Pro implementation required 1.285×
the power of the sequential program running on a node with no FPGA (a 28.5% increase) and
1.027× the power of the sequential program running on a node with an FPGA (a 2.7% increase).
For the normal-vector calculation, the FPGA implementation required 1.259× and 1.011× the
power of the sequential program (increases of 25.9% and 1.1%), respectively.

The background power required for any system will vary based on the particular operating
system or other processes that are running in addition to the calculation of interest. Processing unit
power can be isolated from background power by calculating the ratio

PFPGA−PFPGA,IDLE

PSEQ−PSEQ,IDLE
(5.2)

41

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0 100 200 300 400

Sample Number (2 sec interval)

No FPGA Node: Idle

Total Power (Watts)

Figure 5.2: Background power measurements of a node without an FPGA.

where PSEQ is the power consumed by the sequential program in a node with no FPGA attached,
PSEQ,IDLE is the power consumed in the same node when the sequential program is not executing
(although the operating system’s instructions will still be executing in that node), PFPGA is the
power consumed by the parallel hardware design in an FPGA in a node with the FPGA attached,
and PFPGA,IDLE is the power consumed by that same node when the FPGA does not contain the
parallel design, so is idling. The result was 1.240× power consumption (24.0% increase) for the
ray-intersection calculation and 1.451× (45.1% increase) for the normal-vector calculation.

42

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0 100 200 300 400

Sample Number (2 sec interval)

Node with No FPGA: Normal-Vector

Sequential Implementation

Total Power (Watts)

Figure 5.3: Normal-vector calculation implemented with only an Opteron 275 on a node without
an FPGA.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0 100 200 300 400

Sample Number (2 sec interval)

Node with No FPGA: Ray-Intersection

Sequential Implementation

Total Power (Watts)

Figure 5.4: Ray-intersection calculation implemented with only an Opteron 275 on a node without
an FPGA.

43

60 00
80.00

100.00
120.00
140.00

Node with FPGA: Idle

0.00
20.00
40.00
60.00

0 100 200 300 400

Sample Number (2 sec interval)

Total Power (Watts)

Figure 5.5: Background power measurements of a node with an FPGA.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0 100 200 300 400

Sample Number (2 sec interval)

Node with FPGA: Normal-Vector

Sequential Implementation

Total Power (Watts)

Figure 5.6: Normal-vector calculation implemented with only an Opteron 275 on a node with an
FPGA.

44

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0 100 200 300 400

Sample Number (2 sec interval)

Node with FPGA: Normal-Vector

FPGA Implementation

Total Power (Watts)

Figure 5.7: Normal-vector calculation implemented with a Virtex-II Pro and an Opteron 275.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0 100 200 300 400

Sample Number (2 sec interval)

Node with FPGA: Ray-Intersection

Sequential Implementation

Total Power (Watts)

Figure 5.8: Ray-intersection calculation implemented with only an Opteron 275 on a node with an
FPGA.

45

Node with FPGA: Ray-Intersection

FPGA Implementation

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0 100 200 300 400

Sample Number (2 sec interval)

Total Power (Watts)

`

Figure 5.9: Ray-intersection calculation implemented with a Virtex-II Pro and an Opteron 275.

46

Chapter 6

Conclusion

In this paper, the acceleration of two portions of the optical simulation of NASA’s Moderate Reso-
lution Imaging Spectroradiometer was presented. Mitrion-C HLL was used to implement hardware
designs on Virtex-II Pro FPGAs. A functionally equivalent program was written using ANSI-C and
implemented on an Advanced Micro Devices Opteron 275 processor.

Throughput and power of all implementations were measured on the Cray-XD1 supercomputer.
Recent marketing literature from Mitrionics AB—the developer of Mitrion-C—has claimed the
ability of FPGAs to process at speeds of up to 100 times faster than sequential processors and to
use only 2% as much power when operating at the same speed as sequential processors [30]. The
maximum speedup measured in this project was 10.67×, or a 967% increase. This speedup was
measured using only two of the FPGA’s four memories for input. It is predicted that the measured
speedup would have been doubled had all four memories been used. However, the feasibility of
such an implementation from a resource and power consumption standpoint are unknown.

The maximum power increase required to run an FPGA was measured to be 45.1% when
power consumed by the processing unit was isolated. However, many researchers may be more
interested in total power consumption because of overall heat and cost limits. Taking background
power into account, the maximum power increase required to run an FPGA was measured to
be 28.5%. Throughput and power are presented separately as benefit and cost because different
applications may weight different factors more heavily, and so no one direct comparison would be
comprehensive.

The results showed that floating-point operations using FPGAs offer significant speedup over
sequential processor implementations without excessive additional power consumption. It was also
shown that high-level languages such as Mitrion-C can reduce development times and the need for
extensive experience with hardware design and still achieve efficient FPGA use.

The greatest disadvantage observed in this research to using FPGAs for high-performance com-
puting was the need for a sequential host program to feed new data to the FPGA. Even when the
sequential program was not contributing directly to the calculations, it continued to consume a sig-
nificant amount of power. There are two ways to avoid this problem: (1) eliminate the sequential
processor and find another way to feed data to the FPGA or (2) use the sequential processor both
to feed data to the FPGA and to perform some of the calculations in parallel with the FPGA.

47

Bibliography

[1] Cray, Inc., “Cray XD1 datasheet,” Cray Inc., Tech. Rep., June 2005. [Online]. Available:
http://www.cray.com/downloads/Cray_XD1_Datasheet.pdf

[2] Naval Research Laboratory, “Department of Defense (DOD) high performance computing-
modernization plan,” Dec. 2006. [Online]. Available: http://www.cmf.nrl.navy.mil/CCS/hpc-
nrl.html

[3] R. Wain, I. Bush, M. Guest, M. Deegan, I. Kozin, and C. Kitchen, “An overview of FP-
GAs and FPGA programming; initial experiences at Daresbury,” Computational Science and
Engineering Department, Nov. 2006.

[4] IEEE, “IEEE standard for binary floating-point arithmetic, ANSI-IEEE std 754-1985,” IEEE
Standards Board, Tech. Rep., 1985.

[5] N. Shirazi, A. Walters, and P. Athanas, “Quantitative analysis of floating point arithmetic on
FPGA based custom computing machines,” FPGAs for Custom Computing Machines, 1995.
Proceedings. IEEE Symposium on, pp. 155–162, 19-21 Apr 1995.

[6] P. Belanović and M. Leeser, “A library of parameterized floating point modules and their
use,” in 12th International Conference on Field Programmable Logic and Application,
FPL 2002, Montpellier, France, September 2002, pp. 657–666. [Online]. Available:
citeseer.ist.psu.edu/belanovic02library.html

[7] J. Dido, N. Geraudie, L. Loiseau, O. Payeur, Y. Savaria, and D. Poirier, “A flexible floating-
point format for optimizing data-paths and operators in FPGA based DSPs,” in FPGA ’02:
Proceedings of the 2002 ACM/SIGDA tenth international symposium on Field-programmable
gate arrays. New York, NY, USA: ACM, 2002, pp. 50–55.

[8] C. B. Cameron, “Parallel ray tracing using the message passing interface (MPI),” IEEE Trans.
Instrum. Meas., vol. 57, no. 2, pp. 228–234, Feb. 2008.

[9] S. Brown and J. Rose, “Architecture of FPGAs and CPLDs: A tutorial,” 1996. [Online].
Available: citeseer.ist.psu.edu/brown96architecture.html

[10] M. Barr, “How programmable logic works.” Oct. 2007. [Online]. Available:
http://www.netrino.com/Articles/ProgrammableLogic/index.php

48

[11] A. Dellson, G. Sandberg, and S. Möhl, “Turning FPGAs into supercomputers.” Cray User
Group, 2006.

[12] Y.-C. Hsu and Y.-L. Jeang, “Pipeline scheduling techniques in high-level synthesis,” ASIC
Conference and Exhibit, 1993. Proceedings., Sixth Annual IEEE International, pp. 396–403,
27 Sep-1 Oct 1993.

[13] B. R. Rau and C. D. Glaeser, “Some scheduling techniques and an easily schedulable hori-
zontal architecture for high performance scientific computing,” SIGMICRO Newsl., vol. 12,
no. 4, pp. 183–198, 1981.

[14] B. Fagin and C. Renard, “Field-programmable gate arrays and floating-point arithmetic,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 2, no. 3, pp. 365–
367, Sept. 1994.

[15] L. Louca, T. A. Cook, and W. H. Johnson, “Implementation of IEEE single precision floating
point addition and multiplication on FPGAs,” in FPGAs for Custom Computing Machines,
Apr. 1996, pp. 107–116.

[16] A. A. Gaffar, W. Luk, P. Y. Cheung, N. Shirazi, and J. Hwang, “Automating customization
of floating-point designs,” in International Conference on Field-Programmable Logic and
Applications, Aug. 2002.

[17] A. A. Gaffar, O. Mencer, W. Luk, P. Cheung, and N. Shirazi, “Floating point bitwidth analysis
via automatic differentiation,” in International Conference on Field-Programmable Technol-
ogy, 2002.

[18] K. Underwood, “FPGAs vs. CPUs: Trends in peak floating-point performance,” ACM/SIGDA
Twelfth ACM International Symposium on Field-Programmable Gate Arrays (FPGA 2004),
2004.

[19] G. Genest, R. Chamberlain, and R. Bruce, “Programming an FPGA-based super computer us-
ing a C-to-VHDL compiler: DIME-C,” in Second NASA/ESA Conference on Adaptive Hard-
ware and Systems, Aug. 2007, pp. 280–286.

[20] G. H. Spencer and M. V. R. K. Murtry, “General ray-tracing procedure,” J. Opt Soc. Ameri.,
vol. 52, no. 6, pp. 652–678, June 1962.

[21] C. Cameron, R. Rodriguez, N. Padgett, E. Waluschka, and S. Kizhner, “Optical ray tracing
using parallel processors,” IEEE Trans. Instrum. Meas., vol. 54, no. 1, pp. 87–97, Feb. 2005.

[22] C. Cameron, R. Rodriguez, N. Padgett, E. Waluschka, S. Kizhner, G. Colon, and C. Weeks,
“Fast optical ray tracing using parallel DSPs,” IEEE Trans. Instrum. Meas., vol. 55, no. 3, pp.
801–808, June 2006.

[23] G. Amdahl, “Validity of the single processor approach to achieving large scale computing
capabilities,” in AFIPS Conf. Proc., vol. 30, 1967, pp. 483–485.

49

[24] J. L. Tripp, M. B. Gokhale, and K. D. Peterson, “Trident: From high-level language to hard-
ware circuitry,” Field Programmable Logic and Applications, 2006. FPL 2006. International
Conference on, vol. 40, no. 3, pp. 28–37, 2007.

[25] J. Koo, A. Evans, and W. Gross, “Accelerating a medical 3D brain MRI analysis algorithm
using a high-performance reconfigurable computer,” Field Programmable Logic and Appli-
cations, 2007. FPL 2007. International Conference on, pp. 11–16, 27-29 Aug. 2007.

[26] J. J. Koo, D. Fernandez, A. Haddad, and W. J. Gross, “Evaluation of a high-level-language
methodology for high-performance reconfigurable computers,” Application -specific Systems,
Architectures and Processors, 2007. ASAP. IEEE International Conf. on, pp. 30–35, 9-11 July
2007.

[27] S. D. Landy and A. S. Szalay, “Bias and variance of angular correlation functions,” Astrophys.
J., vol. 412, pp. 64–71, July 1993. [Online]. Available: http://dx.doi.org/10.1086%2F172900

[28] V. V. Kindratenko, R. J. Brunner, and A. D. Myers, “Mitrion-C Application Development
on SGI Altix 350/RC100,” Field-Programmable Custom Computing Machines, 2007. FCCM
2007. 15th Annual IEEE Symposium on, pp. 239–250, 23-25 April 2007.

[29] E. El-Araby, M. Taher, M. Abouellail, T. El-Ghazawi, and G. Newby, “Comparative analysis
of high level programming for reconfigurable computers: Methodology and empirical study,”
Programmable Logic, 2007. SPL ’07. 2007 3rd Southern Conference on, pp. 99–106, 28-26
Feb. 2007.

[30] Mitrionics AB, “Accelerate your applications—unleash the massive performance of FPGAs.”
[Online]. Available: http://www.mitrion.com/press/Mitrion_product_brief.pdf

[31] S. Mohl, “The Mitrion-C programming language,” Mitrionics Inc., 2006. [Online]. Available:
http://www.mitrionics.com/

[32] M. J. Kidger, Fundamental Optical Design. Fundamental Optical Design by Michael
J. Kidger Bellingham, WA: SPIE-The International Society for Optical Engineering, 2002,
2002.

[33] Cray Inc., “Cray XD1 glossary,” Cray Inc., 2005.

50

A
pp

en
di

x
A

M
itr

io
n-

C
C

od
e

of
R

ay
-I

nt
er

se
ct

io
n

C
al

cu
la

tio
n

.
1

M
it

ri
o

n
−C

1
.3

;

3
//

O
p

ti
o

n
s

:
−

cp
p

5
//

D
ec

im
a

l
va

lu
e

4
∗1

6^
4

=
26

21
44

#
d

ef
in

e
N

U
M

_S
A

M
PL

ES
0

x4
00

00
7

//
M

em
or

ie
s

m
u

st
be

d
e

fi
n

e
d

w
it

h
64
−

b
it

w
id

th
an

d
20
−

b
it

a
d

d
re

ss
sp

a
ce

.
9

#
d

ef
in

e
Ex

tR
A

M
m

em
b

it
s

:6
4

[0
x1

00
00

0
]

11
//

D
ef

in
e

"
F

lo
a

t"
a

s
a

32
−

b
it

si
n

g
le
−

p
re

c
is

io
n

fl
o

a
ti

n
g
−

p
o

in
t

nu
m

be
r

.
#

d
ef

in
e

F
lo

at
fl

o
a

t
:2

4
.8

13 15
//

T
h

is
fu

n
c

ti
o

n
re

a
d

s
th

e
e

ig
h

t
in

p
u

ts
fr

o
m

th
e

Q
D

R
SR

A
M

s
0

an
d

1
.

(F
lo

at
,

F
lo

at
,

F
lo

at
,

F
lo

at
,

F
lo

at
,

F
lo

at
,

F
lo

at
,

F
lo

at
,

E
xt

R
A

M
,

Ex
tR

A
M

)
re

a
d

_
in

p
u

ts
(r

i_
ra

m
_

0
,

ri
_

ra
m

_
1

,
ri

_
id

x
)

17
{

51
ri

_
o

ff
se

t
=

2∗
ri

_
id

x
;

19

b
it

s
:6

4
ri

_
b

6
4

_
0

;
21

b
it

s
:6

4
ri

_
b

6
4

_
1

;
b

it
s

:6
4

ri
_

b
6

4
_

2
;

23
b

it
s

:6
4

ri
_

b
6

4
_

3
;

25
//

B
y

u
si

n
g

th
e

c
o

rr
e

c
tl

y
m

em
or

y
re

fe
re

n
ce

s
,

M
it

ri
o

n
ca

n
en

su
re

//
th

a
t

a
Q

D
R

SR
AM

is
re

a
d

y
b

ef
o

re
d

a
ta

is
re

a
d

.
27

(r
i_

b
6

4
_

0
,

ri
_

ra
m

_
0

_
1

)
=

_m
em

re
ad

(r
i_

ra
m

_
0

,
ri

_
o

ff
se

t
)

;
(r

i_
b

6
4

_
1

,
ri

_
ra

m
_

1
_

1
)

=
_m

em
re

ad
(r

i_
ra

m
_

1
,

ri
_

o
ff

se
t

)
;

29
(r

i_
b

6
4

_
2

,
ri

_
ra

m
_

0
_

2
)

=
_m

em
re

ad
(r

i_
ra

m
_

0
_

1
,

ri
_

o
ff

se
t+

1)
;

(r
i_

b
6

4
_

3
,

ri
_

ra
m

_
1

_
2

)
=

_m
em

re
ad

(r
i_

ra
m

_
1

_
1

,
ri

_
o

ff
se

t+
1)

;
31

//
C

om
bi

ne
4

64
−

b
it

w
or

ds
in

to
a

si
n

g
le

25
6−

b
it

w
or

d
.

33
b

it
s

:2
5

6
ri

_
b

2
5

6
=

[r
i_

b
6

4
_

0
,

ri
_

b
6

4
_

1
,

ri
_

b
6

4
_

2
,

ri
_

b
6

4
_

3
];

35
//

C
o

n
ve

rt
th

e
25

6−
b

it
st

ri
n

g
in

to
a

li
s

t
o

f
4

32
−

b
it

w
or

ds
.

F
lo

at
[8

]
b

_
to

_
f

=
ri

_
b

2
5

6
;

37

//
C

o
n

ve
rt

th
e

32
−

b
it

w
or

ds
in

to
fl

o
a

ti
n

g
−

p
o

in
t

re
p

re
se

n
ta

ti
o

n
.

39
F

lo
at

ri
_

a
=

b
_

to
_

f
[0

];
F

lo
at

ri
_

b
=

b
_

to
_

f
[1

];
41

F
lo

at
ri

_
c

=
b

_
to

_
f

[2
];

F
lo

at
ri

_
d

=
b

_
to

_
f

[3
];

43

F
lo

at
ri

_
e

=
b

_
to

_
f

[4
];

45
F

lo
at

ri
_

f
=

b
_

to
_

f
[5

];
F

lo
at

ri
_

g
=

b
_

to
_

f
[6

];
47

F
lo

at
ri

_
h

=
b

_
to

_
f

[7
];

49
//

S
ta

te
m

en
ts

to
m

ak
e

su
re

a
ll

m
em

or
y

re
a

d
s

a
re

co
m

p
le

te
.

52
ri

_
ra

m
_

0
_

3
=

_
w

ai
t(

ri
_

ra
m

_
0

_
2

)
;

51
ri

_
ra

m
_

1
_

3
=

_
w

ai
t(

ri
_

ra
m

_
1

_
2

)
;

53
}

(
ri

_
a

,
ri

_
b

,
ri

_
c

,
ri

_
d

,
ri

_
e

,
ri

_
f

,
ri

_
g

,
ri

_
h

,
ri

_
ra

m
_

0
_

3
,

ri
_

ra
m

_
1

_
3

)
;

55
//

T
h

is
fu

n
c

ti
o

n
im

p
le

m
en

ts
th

e
se

ri
e

s
o

f
a

ri
th

m
e

ti
c

//
o

p
e

ra
ti

o
n

s
a

ss
o

c
ia

te
d

w
it

h
th

e
ra

y−
in

te
rs

e
c

ti
o

n
c

a
lc

u
la

ti
o

n
.

57
(F

lo
at

,
F

lo
at

,
F

lo
at

)
c

a
lc

_
o

u
tp

u
ts

(c
o_

x0
,

co
_y

0
,

co
_z

0
,

co
_k

,
co

_L
,

co
_M

,
co

_N
,

co
_c

)
{

59
co

_g
=

co
_N
−

co
_c
∗(

co
_x

0
∗c

o_
L

+
co

_y
0
∗c

o_
M

+
(c

o_
k

+
1

.0
)∗

co
_z

0
∗c

o_
N

)
;

co
_h

=
co

_c
∗(

co
_x

0
∗c

o_
x0

+
co

_y
0
∗c

o_
y0

+
(c

o_
k

+
1

.0
)∗

co
_z

0
∗c

o_
z0

)−
2.

0∗
co

_z
0

;
61

co
_

f
=

co
_c
∗(

1
.0

+
co

_k
∗c

o_
N
∗c

o_
N

)
;

co
_u

=
(c

o_
h

)
/(

co
_g

+
_

sq
rt

(c
o_

g
∗c

o_
g−

co
_

f∗
co

_h
))

;
63

co
_x

1
=

co
_u
∗c

o_
L

+
co

_x
0

;
co

_y
1

=
co

_u
∗c

o_
M

+
co

_y
0

;
65

co
_z

1
=

co
_u
∗c

o_
N

+
co

_z
0

;

67
//

T
he

th
re

e
o

u
tp

u
ts

a
re

th
e

c
o

o
rd

in
a

te
s

o
f

th
e

p
o

in
t

o
f

in
te

rs
e

c
ti

o
n

.
}

(c
o_

x1
,

co
_y

1
,

co
_z

1
)

;
69 71

//
T

h
is

fu
n

c
ti

o
n

w
ri

te
s

tw
o

o
u

tp
u

ts
to

a
Q

D
R

SR
AM

.
(E

xt
R

A
M

)
w

ri
te

_
o

u
tp

u
ts

(w
o_

ra
m

_0
,

w
o_

ou
t_

0
,

w
o_

ou
t_

1
,

w
o

_
o

ff
se

t)
73

{
//

C
om

bi
ne

tw
o

32
−

b
it

fl
o

a
ti

n
g
−

p
o

in
t

va
lu

es
in

to
a

li
s

t
.

75
F

lo
at

[2
]

f_
to

_
b

=
[w

o_
ou

t_
0

,
w

o_
ou

t_
1

];

77
//

C
o

n
ve

rt
th

e
li

s
t

in
to

a
64
−

b
it

w
or

d
.

b
it

s
:6

4
w

o_
b6

4
=

f_
to

_
b

;
79

//
W

ri
te

th
e

64
−

b
it

w
or

d
to

th
e

ta
rg

e
t

Q
D

R
SR

AM
.

53
81

w
o_

ra
m

_0
_1

=
_m

em
w

ri
te

(w
o_

ra
m

_0
,

w
o

_
o

ff
se

t
,

w
o_

b6
4

)
;

83
//

W
a

it
s

u
n

ti
l

w
ri

te
is

co
m

p
le

te
.

T
h

is
co

m
m

an
d

en
su

re
s

//
th

e
m

em
or

y
is

re
a

d
y

b
ef

o
re

a
n

o
th

er
w

ri
te

is
a

tt
em

p
te

d
85

w
o_

ra
m

_0
_2

=
_

w
ai

t(
w

o_
ra

m
_0

_1
)

;
}

(w
o_

ra
m

_0
_2

)
;

87

//
T

h
is

is
th

e
m

ai
n

pr
og

ra
m

.
F

or
th

e
C

ra
y

X
D

1
,

th
e

m
ai

n
pr

og
ra

m
89

//
m

u
st

ta
ke

fo
u

r
64
−

b
it

e
x

te
rn

a
l

m
em

o
ri

es
a

s
in

p
u

t
.

It
a

ls
o

m
u

st
//

re
tu

rn
fo

u
r

e
x

te
rn

a
l

m
em

o
ri

es
a

s
o

u
tp

u
t

.
T

he
m

em
o

ri
es

a
re

91
//

p
a

ss
ed

a
s

re
fe

re
n

c
e

s
.

(E
xt

R
A

M
,

E
xt

R
A

M
,

E
xt

R
A

M
,

Ex
tR

A
M

)
93

m
ai

n
(E

xt
R

A
M

ra
m

_0
,

Ex
tR

A
M

ra
m

_1
,

Ex
tR

A
M

ra
m

_2
,

Ex
tR

A
M

ra
m

_3
)

{
95

//
U

se
d

to
fi

ll
th

e
32

u
n

u
se

d
b

it
s

in
ra

m
3

.
F

lo
at

em
pt

y
=

0
.0

;
97

F
lo

at
<N

U
M

_S
A

M
PL

ES
>

fi
n

a
l_

x
1

;
99

F
lo

at
<N

U
M

_S
A

M
PL

ES
>

fi
n

a
l_

y
1

;
F

lo
at

<N
U

M
_S

A
M

PL
ES

>
fi

n
a

l_
z

1
;

10
1

//
T

h
is

lo
o

p
e

x
e

c
u

te
s

ea
ch

o
f

th
e

fu
n

c
ti

o
n

s
w

it
h

in
in

p
a

ra
ll

e
l

.
10

3
//

It
it

e
ra

te
s

a
cr

o
ss

ea
ch

sa
m

pl
e

,
fo

r
a

to
ta

l
o

f
26

21
44

ti
m

es
.

//
T

he
M

it
ri

o
n

co
m

p
il

er
re

so
lv

e
s

d
a

ta
d

ep
en

d
en

ci
es

w
it

h
in

th
e

10
5

//
lo

o
p

,
a

u
to

m
a

ti
c

a
ll

y
a

ll
o

c
a

ti
n

g
re

so
u

rc
es

fo
r

m
ax

im
um

//
th

ro
u

g
h

p
u

t.
10

7
(r

am
_2

_2
,

ra
m

_3
_2

,
ra

m
_0

_2
,

ra
m

_1
_2

,
fi

n
al

_
x

1
,

fi
n

al
_

y
1

,
fi

n
a

l_
z

1
)

=
fo

re
ac

h
(i

d
x

in
<

0
..

N
U

M
_S

A
M

PL
ES
−

1>
)

{
10

9
(x

0
,

y0
,

z0
,

k
,

l
,

m
,

n
,

c
,

ra
m

_0
_1

,
ra

m
_1

_1
)

=
re

a
d

_
in

p
u

ts
(r

am
_0

,
ra

m
_1

,
id

x
)

;
(x

1
,

y1
,

z1
)

=
c

a
lc

_
o

u
tp

u
ts

(x
0

,
y0

,
z0

,
k

,
l

,
m

,
n

,
c

)
;

54
11

1
ra

m
_2

_1
=

w
ri

te
_

o
u

tp
u

ts
(r

am
_2

,
x1

,
y1

,
id

x
)

;
ra

m
_3

_1
=

w
ri

te
_

o
u

tp
u

ts
(r

am
_3

,
z1

,
em

pt
y

,
id

x
)

;
11

3
}

(r
am

_2
_1

,
ra

m
_3

_1
,

ra
m

_0
_1

,
ra

m
_1

_1
,

x1
,

y1
,

z1
)

;

11
5

//
P

a
ss

es
th

e
la

st
m

em
or

y
re

fe
re

n
c

e
fo

r
th

e
se

ra
m

s
so

th
e

//
fi

n
a

l
re

fe
re

n
c

e
is

p
a

ss
ed

o
u

t
o

f
th

e
m

ai
n

pr
og

ra
m

.
11

7
ra

m
_2

_3
=

_
w

ai
t(

ra
m

_2
_2

)
;

ra
m

_3
_3

=
_

w
ai

t(
ra

m
_3

_2
)

;
11

9

}
(r

am
_0

_2
,

ra
m

_1
_2

,
ra

m
_2

_3
,

ra
m

_3
_3

)
;

55

A
pp

en
di

x
B

M
itr

io
n-

C
C

od
e

of
N

or
m

al
-V

ec
to

r
C

al
cu

la
tio

n

. M
it

ri
o

n
−C

1
.3

;
2

//
O

p
ti

o
n

s
:
−

cp
p

4

//
=

8∗
16

^4
=

52
42

88
6

#
d

ef
in

e
N

U
M

_S
A

M
PL

ES
0

x8
00

00

8
//

M
em

or
ie

s
m

u
st

be
d

e
fi

n
e

d
w

it
h

64
−

b
it

w
id

th
an

d
20
−

b
it

a
d

d
re

ss
sp

a
ce

.
#

d
ef

in
e

Ex
tR

A
M

m
em

b
it

s
:6

4
[0

x1
00

00
0

]
10

//
D

ef
in

e
"

F
lo

a
t"

a
s

a
32
−

b
it

si
n

g
le
−

p
re

c
is

io
n

fl
o

a
ti

n
g
−

p
o

in
t

nu
m

be
r

.
12

#
d

ef
in

e
F

lo
at

fl
o

a
t

:2
4

.8

14

//
T

h
is

fu
n

c
ti

o
n

re
a

d
s

th
e

fo
u

r
in

p
u

ts
fr

o
m

th
e

Q
D

R
SR

A
M

s
0

an
d

1
.

16
(F

lo
at

,
F

lo
at

,
F

lo
at

,
F

lo
at

)
re

a
d

_
in

p
u

ts
(r

i_
ra

m
_

0
,

ri
_

ra
m

_
1

,
ri

_
o

ff
se

t
)

{
18

//
R

ea
d

in
a

64
−

b
it

w
or

d
.

56
b

it
s

:6
4

ri
_

b
6

4
_

0
=

_m
em

re
ad

(r
i_

ra
m

_
0

,
ri

_
o

ff
se

t
)

;
20

b
it

s
:6

4
ri

_
b

6
4

_
1

=
_m

em
re

ad
(r

i_
ra

m
_

1
,

ri
_

o
ff

se
t

)
;

22
//

C
om

bi
ne

th
e

tw
o

64
−

b
it

w
or

ds
in

to
a

12
8−

b
it

w
or

d
.

b
it

s
:1

2
8

ri
_

b
1

2
8

=
[r

i_
b

6
4

_
0

,
ri

_
b

6
4

_
1

];
24

//
C

o
n

ve
rt

th
e

12
8−

b
it

w
or

d
in

to
a

li
s

t
o

f
o

f
4

32
−

b
it

w
or

ds
.

26
F

lo
at

[4
]

b
_

to
_

f
=

ri
_

b
1

2
8

;

28
//

C
o

n
ve

rt
th

e
32
−

b
it

w
or

ds
in

to
fl

o
a

ti
n

g
−

p
o

in
t

re
p

re
se

n
ta

ti
o

n
.

F
lo

at
ri

_
x

=
b

_
to

_
f

[0
];

30
F

lo
at

ri
_

y
=

b
_

to
_

f
[1

];
F

lo
at

ri
_

u
=

b
_

to
_

f
[2

];
32

F
lo

at
ri

_
c

=
b

_
to

_
f

[3
];

34
}

(r
i_

x
,

ri
_

y
,

ri
_

u
,

ri
_

c
)

;

36

//
T

h
is

fu
n

c
ti

o
n

im
p

le
m

en
ts

th
e

se
ri

e
s

o
f

a
ri

th
m

e
ti

c
38

//
o

p
e

ra
ti

o
n

s
a

ss
o

c
ia

te
d

w
it

h
th

e
no

rm
al
−

v
e

c
to

r
c

a
lc

u
la

ti
o

n
.

(F
lo

at
,

F
lo

at
,

F
lo

at
)

c
a

lc
_

o
u

tp
u

ts
(c

o_
x

,
co

_y
,

co
_u

,
co

_c
)

40
{

co
_v

=
co

_u
∗

(c
o_

x
∗

co
_x

+
co

_y
∗

co
_y

)
;

42
co

_a
=

_
sq

rt
(1
−

co
_v

)
;

co
_p

=
1

.0
+

co
_a

;
44

co
_q

=
co

_a
∗

co
_p

;
co

_
r

=
co

_p
∗

co
_q

;
46

co
_

s
=

2
.0
∗

co
_q

;
co

_w
=

co
_

c
/c

o
_

r
;

48
co

_b
=

co
_w
∗

(c
o

_
s

+
co

_v
)

;
co

_d
x

=
co

_b
∗

co
_x

;
50

co
_d

y
=

co
_b
∗

co
_y

;

57
co

_e
=

_
sq

rt
(c

o_
dx
∗

co
_d

x
+

co
_d

y
∗

co
_d

y
+

1
)

;
52

co
_

f
=

1
.0

/
co

_e
;

co
_

fd
x

=
co

_
f
∗

co
_d

x
;

54
co

_
fd

y
=

co
_

f
∗

co
_d

y
;

56
//

T
he

th
re

e
o

u
tp

u
ts

a
re

th
e

th
re

e
co

m
p

o
n

en
ts

o
f

th
e

n
o

rm
a

l
v

e
c

to
r

.
}

(c
o

_
f

,
co

_
fd

x
,

co
_

fd
y

)
;

58 60
//

T
h

is
fu

n
c

ti
o

n
w

ri
te

s
tw

o
o

u
tp

u
ts

to
a

Q
D

R
SR

AM
.

(E
xt

R
A

M
)

w
ri

te
_

o
u

tp
u

ts
(w

o_
ra

m
_0

,
w

o_
ou

t_
0

,
w

o_
ou

t_
1

,
w

o
_

o
ff

se
t)

62
{

//
C

om
bi

ne
tw

o
32
−

b
it

fl
o

a
ti

n
g
−

p
o

in
t

va
lu

es
in

to
a

li
s

t
.

64
F

lo
at

[2
]

f_
to

_
b

=
[w

o_
ou

t_
0

,
w

o_
ou

t_
1

];

66
//

C
o

n
ve

rt
th

e
li

s
t

in
to

a
64
−

b
it

w
or

d
.

b
it

s
:6

4
w

o_
b6

4
=

f_
to

_
b

;
68

//
W

ri
te

s
th

e
64
−

b
it

w
or

d
to

th
e

ta
rg

e
t

Q
D

R
SR

AM
.

70
w

o_
ra

m
_0

_1
=

_m
em

w
ri

te
(w

o_
ra

m
_0

,
w

o
_

o
ff

se
t

,
w

o_
b6

4
)

;

72
//

W
a

it
s

u
n

ti
l

w
ri

te
is

co
m

p
le

te
.

T
h

is
co

m
m

an
d

en
su

re
s

//
th

e
m

em
or

y
is

re
a

d
y

b
ef

o
re

a
n

o
th

er
w

ri
te

is
a

tt
em

p
te

d
74

w
o_

ra
m

_0
_2

=
_

w
ai

t(
w

o_
ra

m
_0

_1
)

;
}

(w
o_

ra
m

_0
_2

)
;

76 78
//

T
h

is
is

th
e

m
ai

n
pr

og
ra

m
.

F
or

th
e

C
ra

y
X

D
1

,
th

e
m

ai
n

pr
og

ra
m

//
m

u
st

ta
ke

fo
u

r
64
−

b
it

e
x

te
rn

a
l

m
em

o
ri

es
a

s
in

p
u

t
.

It
a

ls
o

m
u

st
80

//
re

tu
rn

fo
u

r
e

x
te

rn
a

l
m

em
o

ri
es

a
s

o
u

tp
u

t
.

T
he

m
em

o
ri

es
a

re
//

p
a

ss
ed

a
s

re
fe

re
n

c
e

s
.

82
(E

xt
R

A
M

,
E

xt
R

A
M

,
E

xt
R

A
M

,
Ex

tR
A

M
)

58
m

ai
n

(E
xt

R
A

M
ra

m
_0

,
Ex

tR
A

M
ra

m
_1

,
Ex

tR
A

M
ra

m
_2

,
Ex

tR
A

M
ra

m
_3

)
84

{
//

U
se

d
to

fi
ll

th
e

32
u

n
u

se
d

b
it

s
in

ra
m

3
.

86
F

lo
at

em
pt

y
=

0
.0

;

88
F

lo
at

<N
U

M
_S

A
M

PL
ES

>
fi

n
a

l_
f

;
F

lo
at

<N
U

M
_S

A
M

PL
ES

>
fi

n
a

l_
fd

x
;

90
F

lo
at

<N
U

M
_S

A
M

PL
ES

>
fi

n
a

l_
fd

y
;

92
(

fi
n

al
_

x
,

fi
n

al
_

y
,

fi
n

al
_

u
,

fi
n

a
l_

c
)

=
fo

re
ac

h
(i

d
x

in
<

0
..

N
U

M
_S

A
M

PL
ES
−

1>
)

{
94

//
R

ea
d

4
x5

24
28

8
in

p
u

ts
.

(x
,

y
,

u
,

c
)

=
re

a
d

_
in

p
u

ts
(r

am
_0

,
ra

m
_1

,
id

x
)

;
96

}
(x

,
y

,
u

,
c

)
;

98
(

fi
n

a
l_

f
,

fi
n

al
_

fd
x

,
fi

n
a

l_
fd

y
)

=
fo

re
ac

h
(x

_0
,

y_
0

,
u_

0
,

c_
0

,
id

x
in

fi
n

al
_

x
,

fi
n

al
_

y
,

fi
n

al
_

u
,

fi
n

al
_

c
,

<
0

..
N

U
M

_S
A

M
PL

ES
−

1>
)

{
10

0
//

T
he

in
p

u
ts

a
re

p
a

ss
ed

to
c

a
lc

_
o

u
tp

u
ts

a
s

so
o

n
a

s
th

ey
//

a
re

re
a

d
;

th
e

re
is

no
n

ee
d

to
w

a
it

fo
r

a
ll

52
42

88
m

em
or

y
10

2
//

a
cc

es
se

s
to

co
m

p
le

te
.

T
he

co
d

e
is

ru
n

in
p

a
ra

ll
e

l
.

(f
,

fd
x

,
fd

y
)

=
c

a
lc

_
o

u
tp

u
ts

(x
_0

,
y_

0
,

u_
0

,
c_

0
)

;
10

4
}

(f
,

fd
x

,
fd

y
)

;

10
6

(r
am

_2
_2

,
ra

m
_3

_2
)

=
fo

re
ac

h
(f

_0
,

fd
x_

0
,

fd
y_

0
,

id
x

in
fi

n
a

l_
f

,
fi

n
al

_
fd

x
,

fi
n

al
_

fd
y

,
<

0
..

N
U

M
_S

A
M

PL
ES
−

1>
)

{
10

8
//

W
ri

te
s

f
an

d
fd

x
to

ra
m

2
.

ra
m

_2
_1

=
w

ri
te

_
o

u
tp

u
ts

(r
am

_2
,

f_
0

,
fd

x_
0

,
id

x
)

;
11

0

//
W

ri
te

s
fd

y
an

d
a

fi
ll

e
r

to
ra

m
3

.
T

he
fi

ll
e

r
is

11
2

//
ig

n
o

re
d

by
th

e
h

o
st

pr
og

ra
m

.

59
ra

m
_3

_1
=

w
ri

te
_

o
u

tp
u

ts
(r

am
_3

,
fd

y_
0

,
em

pt
y

,
id

x
)

;
11

4
}

(r
am

_2
_1

,
ra

m
_3

_1
)

;

11
6

//
P

a
ss

es
th

e
la

st
m

em
or

y
re

fe
re

n
c

e
fo

r
th

e
se

ra
m

s
so

th
e

//
fi

n
a

l
re

fe
re

n
c

e
is

p
a

ss
ed

o
u

t
o

f
th

e
m

ai
n

pr
og

ra
m

.
11

8
ra

m
_2

_3
=

_
w

ai
t(

ra
m

_2
_2

)
;

ra
m

_3
_3

=
_

w
ai

t(
ra

m
_3

_2
)

;
12

0

}
(r

am
_0

,
ra

m
_1

,
ra

m
_2

_3
,

ra
m

_3
_3

)
;

60

A
pp

en
di

x
C

A
N

SI
-C

H
os

tC
od

e
of

R
ay

-I
nt

er
se

ct
io

n
C

al
cu

la
tio

n

.
1

#
in

cl
u

d
e

<
st

d
io

.h
>

#
in

cl
u

d
e

<
st

d
li

b
.h

>
3

#
in

cl
u

d
e

<
ti

m
e

.h
>

#
in

cl
u

d
e

"
m

it
h

al
.h

"
5

#
in

cl
u

d
e

"
m

it
h

al
_

g
en

.h
"

#
in

cl
u

d
e

"
fl

o
a

t
.h

"
7

#
d

ef
in

e
N

U
M

_S
A

M
PL

ES
13

10
72

9

FP
G

A
∗

f
;

11
P

ro
ce

ss
o

r
∗p

;
fl

o
a

t
∗r

am
_a

;
13

fl
o

a
t
∗r

am
_b

;
fl

o
a

t
∗r

am
_c

;
15

fl
o

a
t
∗r

am
_d

;

17
un

io
n

h
e

x
_

fl
o

a
t

{
fl

o
a

t
f

;

61
19

lo
n

g
l;

}
;

21

in
t

in
it

_
fp

g
a

()
23

{
ST

A
TU

S
s

;
25

//
T

he
fo

ll
o

w
in

g
co

d
e

is
p

ro
vi

d
ed

by
M

it
ri

o
n

ic
s

fo
r

h
o

st
−F

PG
A

in
te

rf
a

c
e

.
27

//
A

ll
o

c
a

te
a

FP
G

A
f

=
m

it
ri

o
n

_
fp

g
a

_
a

ll
o

c
a

te
("

"
)

;
29

if
(f

==
N

U
LL

)
{

fp
ri

n
tf

(
st

d
e

rr
,

"C
ou

ld
n

o
t

a
ll

o
c

a
te

a
FP

G
A

\n
"

)
;

31
e

x
it

(1
)

;
}

33

//
C

re
a

te
M

it
ri

o
n

p
ro

ce
ss

o
r

35
p

=
m

it
ri

o
n

_
p

ro
c

e
ss

o
r_

c
re

a
te

("
to

p
.b

in
.u

fp
"

)
;

if
(f

==
N

U
LL

)
{

37
fp

ri
n

tf
(

st
d

e
rr

,
"C

ou
ld

n
o

t
c

re
a

te
M

it
ri

o
n

p
ro

ce
ss

o
r

\n
"

)
;

e
x

it
(1

)
;

39
}

41
//

L
oa

d
th

e
M

it
ri

o
n

p
ro

ce
ss

o
r

o
n

to
th

e
FP

G
A

s
=

m
it

ri
o

n
_

fp
g

a_
lo

ad
_

p
ro

ce
ss

o
r

(f
,

p
)

;
43

if
(s

!=
O

K
)

{
fp

ri
n

tf
(

st
d

e
rr

,
"C

ou
ld

n
o

t
lo

ad
th

e
M

it
ri

o
n

p
ro

ce
ss

o
r

o
n

to
th

e
FP

G
A

\n
"

)
;

45
e

x
it

(1
)

;
}

47

//
A

ss
o

c
ia

te
v

ir
tu

a
l

m
em

or
y

sp
a

ce
s

w
it

h
Q

D
R

SR
AM

m
em

or
y

a
d

d
re

ss
es

.
49

ra
m

_a
=

(
fl

o
a

t∗
)

m
it

ri
o

n
_

p
ro

c
e

ss
o

r_
re

g
_

b
u

ff
e

r
(p

,
"r

am
_0

"
,

N
U

LL
,

N
U

M
_S

A
M

PL
ES

∗2
∗

si
ze

o
f(

fl
o

a
t)
∗8

,
W

R
IT

E_
D

A
TA

)
;

62
51

ra
m

_b
=

(
fl

o
a

t∗
)

m
it

ri
o

n
_

p
ro

c
e

ss
o

r_
re

g
_

b
u

ff
e

r
(p

,
"r

am
_1

"
,

N
U

LL
,

N
U

M
_S

A
M

PL
ES

∗2
∗

si
ze

o
f(

fl
o

a
t)
∗8

,
W

R
IT

E_
D

A
TA

)
;

53
ra

m
_c

=
(

fl
o

a
t∗

)
m

it
ri

o
n

_
p

ro
c

e
ss

o
r_

re
g

_
b

u
ff

e
r

(p
,

"r
am

_2
"

,
N

U
LL

,
N

U
M

_S
A

M
PL

ES
∗2
∗

si
ze

o
f(

fl
o

a
t)
∗8

,
R

EA
D

_D
A

TA
)

;

55
ra

m
_d

=
(

fl
o

a
t∗

)
m

it
ri

o
n

_
p

ro
c

e
ss

o
r_

re
g

_
b

u
ff

e
r

(p
,

"r
am

_3
"

,
N

U
LL

,
N

U
M

_S
A

M
PL

ES
∗2
∗

si
ze

o
f(

fl
o

a
t)
∗8

,
R

EA
D

_D
A

TA
)

;

57
re

tu
rn

1
;

}
59

n
o

rm
al

_
ar

ch
(

fl
o

a
t
∗x

0
,

fl
o

a
t
∗y

0
,

fl
o

a
t
∗z

0
,

fl
o

a
t
∗k

,
fl

o
a

t
∗l

,
fl

o
a

t
∗m

,
fl

o
a

t
∗

n
,

fl
o

a
t
∗c

,
fl

o
a

t
∗x

1
,

fl
o

a
t
∗y

1
,

fl
o

a
t
∗z

1
)

61
{

in
t

i;
63

in
t

n
;

65
//

L
oa

d
th

e
13

10
72

g
en

er
a

te
d

sa
m

p
le

s
2

ti
m

es
to

fi
ll

26
21

44
(2

^1
8

)
b

lo
ck

s
o

f
ra

m
.

fo
r

(n
=

0
;

n
<

2
;

n
+

+
)

67
{

fo
r

(
i

=
0

;
i

<
N

U
M

_S
A

M
PL

ES
;

i+
+

)
69

{
in

t
o

ff
se

t
=

i
∗

4
;

71
ra

m
_a

[(
o

ff
se

t+
0)

+
x_

10
∗N

U
M

_S
A

M
PL

ES
]

=
x0

[
i

];
ra

m
_a

[(
o

ff
se

t+
1)

+
x_

10
∗N

U
M

_S
A

M
PL

ES
]

=
y0

[
i

];
73

ra
m

_b
[(

o
ff

se
t+

0)
+

x_
10
∗N

U
M

_S
A

M
PL

ES
]

=
z0

[
i

];
ra

m
_b

[(
o

ff
se

t+
1)

+
x_

10
∗N

U
M

_S
A

M
PL

ES
]

=
k

[
i

];
75

ra
m

_a
[(

o
ff

se
t+

2)
+

x_
10
∗N

U
M

_S
A

M
PL

ES
]

=
l[

i
];

ra
m

_a
[(

o
ff

se
t+

3)
+

x_
10
∗N

U
M

_S
A

M
PL

ES
]

=
m

[
i

];

63
77

ra
m

_b
[(

o
ff

se
t+

2)
+

x_
10
∗N

U
M

_S
A

M
PL

ES
]

=
n

[
i

];
ra

m
_b

[(
o

ff
se

t+
3)

+
x_

10
∗N

U
M

_S
A

M
PL

ES
]

=
c

[
i

];
79

}
}

81

cl
o

ck
_

t
st

a
rt

_
fp

g
a

,
en

d
_

fp
g

a
;

83

//
B

eg
in

ti
m

e
m

ea
su

re
m

en
t.

85
st

a
rt

_
fp

g
a

=
cl

o
ck

()
;

87
//

R
un

FP
G

A
d

es
ig

n
2^

12
ti

m
es

fo
r

a
to

ta
l

o
f

2
^1

2
∗2

^1
8

,
o

r
2^

30
to

ta
l

sa
m

p
le

s
.

fo
r

(
i=

0
;

i<
4

0
9

6
;

i+
+

)
89

{
m

it
ri

o
n

_
p

ro
c

es
so

r_
ru

n
(p

)
;

91

m
it

ri
o

n
_

p
ro

c
e

ss
o

r_
w

a
it

(p
)

;
93

}

95
//

E
nd

ti
m

e
m

ea
su

re
m

en
t.

en
d

_
fp

g
a

=
cl

o
ck

()
;

97

p
ri

n
tf

("
E

la
p

se
d

C
PU

T
im

e
=

%
16

.5
lf

se
co

n
d

s
\n

"
,

(e
n

d
_

fp
g

a−
st

a
rt

_
fp

g
a

)
/(

d
ou

b
le

)C
LO

C
K

S_
PE

R
_S

EC
)

;
99

fo
r

(n
=

0
;

n
<

2
;

n
+

+
)

10
1

{
fo

r
(

i
=

0
;

i
<

N
U

M
_S

A
M

PL
ES

;
i+

+
)

10
3

{
un

io
n

h
e

x
_

fl
o

a
t

x0
_h

,
y0

_h
,

z0
_h

,
k_

h
,

l_
h

,
m

_h
,

n_
h

,
c_

h
;

10
5

x0
_h

.f
=

x0
[

i
];

64
10

7
y0

_h
.f

=
y0

[
i

];
z0

_h
.f

=
z0

[
i

];
10

9
k_

h
.f

=
k

[
i

];
l_

h
.f

=
l[

i
];

11
1

m
_h

.f
=

m
[

i
];

n_
h

.f
=

n
[

i
];

11
3

c_
h

.f
=

c
[

i
];

11
5

//
D

is
p

la
y

c
a

lc
u

la
ti

o
n

in
p

u
ts

.
p

ri
n

tf
("

%
ld

:
x0

=
%

x
,

y0
=

%
x

,
z0

=
%

x
,

k
=

%
x

,
l

=
%

x
,

m
=

%
x

,
n

=
%

x
,

c
=

%
x

\n
"

,
i

,
x0

_h
.l

,
y0

_h
.l

,
z0

_h
.l

,
k_

h
.l

,
l_

h
.l

,
m

_h
.l

,
n_

h
.l

,
c_

h
.l

)
;

11
7

in
t

o
ff

se
t

=
i∗

2
;

11
9

x1
[

i]
=

ra
m

_c
[(

o
ff

se
t+

0)
+

n∗
N

U
M

_S
A

M
PL

ES
];

y1
[

i]
=

ra
m

_c
[(

o
ff

se
t+

1)
+

n∗
N

U
M

_S
A

M
PL

ES
];

12
1

z1
[

i]
=

ra
m

_d
[(

o
ff

se
t+

0)
+

n∗
N

U
M

_S
A

M
PL

ES
];

12
3

un
io

n
h

e
x

_
fl

o
a

t
x1

_h
,

y1
_h

,
z1

_h
;

x1
_h

.f
=

x1
[

i
];

12
5

y1
_h

.f
=

y1
[

i
];

z1
_h

.f
=

z1
[

i
];

12
7

//
D

is
p

la
y

c
a

lc
u

la
ti

o
n

o
u

tp
u

ts
.

12
9

p
ri

n
tf

("
%

ld
:

x1
=

%
x

,
y1

=
%

x
,

z1
=

%
x

\n
"

,
i

,
x1

_h
.l

,
y1

_h
.l

,
z1

_h
.l

)
;

}
13

1
}

13
3

//
E

nd
ti

m
e

m
ea

su
re

m
en

t.
en

d
_

fp
g

a
=

cl
o

ck
()

;
13

5

65
//

D
is

p
la

y
ti

m
e

m
ea

su
re

m
en

t
13

7
p

ri
n

tf
("

E
la

p
se

d
C

PU
T

im
e

=
%

16
.5

lf
se

co
n

d
s

\n
"

,
(e

n
d

_
fp

g
a−

st
a

rt
_

fp
g

a
)

/(
d

ou
b

le
)

C
LO

C
K

S_
PE

R
_S

EC
)

;

13
9

}

14
1

vo
id

g
en

_
in

p
u

ts
(

fl
o

a
t
∗x

0
,

fl
o

a
t
∗y

0
,

fl
o

a
t
∗z

0
,

fl
o

a
t
∗k

,
fl

o
a

t
∗l

,
fl

o
a

t
∗m

,
fl

o
a

t
∗n

,
fl

o
a

t
∗c

)
{

14
3

in
t

id
x

=
0

;

14
5

//
G

en
er

a
te

re
a

so
n

a
b

le
va

lu
es

fo
r

x
,

y
,

z
,

k
,

l
,

m
,

n
,

an
d

c
.

//
4

va
lu

es
o

f
x

,
4

va
lu

es
o

f
y

,
4

va
lu

es
o

f
z

,
4

va
lu

es
o

f
k

,
14

7
//

4
va

lu
es

o
f

l
,

4
va

lu
es

o
f

m
,

4
va

lu
es

o
f

n
,

an
d

8
va

lu
es

o
f

//
c

a
re

u
se

d
fo

r
a

to
ta

l
o

f
4∗

4∗
4∗

4∗
4∗

4∗
4∗

8
o

r
13

10
72

sa
m

p
le

s
.

14
9

in
t

x0
_c

,
y0

_c
,

z0
_c

,
k_

c
,

l_
c

,
m

_c
,

n_
c

,
c_

c
;

15
1

fo
r

(x
0_

c
=
−

1;
x0

_c
<

2
.1

;
x0

_c
+

+
){

15
3

fo
r

(y
0_

c
=
−

1;
y0

_c
<

2
.1

;
y0

_c
+

+
){

fo
r

(z
0

_c
=
−

1;
z0

_
c

<
2

.1
;

z0
_

c
+

+
){

15
5

fo
r

(k
_c

=
−

2;
k_

c
<

1
.1

;
k_

c
+

+
){

fo
r

(
l_

c
=
−

1;
l_

c
<

2
.1

;
l_

c
+

+
){

15
7

fo
r

(m
_c

=
−

1;
m

_c
<

2
.1

;
m

_c
+

+
){

fo
r

(n
_c

=
−

1;
n_

c
<

2
.1

;
n_

c
+

+
){

15
9

fo
r

(c
_

c
=

0
;

c_
c

<
7

.1
;

c_
c

+
+

)
{

16
1

x0
[i

d
x

]
=

x0
_c

;
y0

[i
d

x
]

=
y0

_c
;

16
3

z0
[i

d
x

]
=

z0
_c

;
k

[i
d

x
]

=
k_

c
;

16
5

l[
id

x
]

=
l_

c
;

66
m

[i
d

x
]

=
m

_c
;

16
7

n
[i

d
x

]
=

n_
c

;
c

[i
d

x
]

=
c_

c
;

16
9

id
x

+
+

;
}}

}}
}}

}
17

1
}

}
17

3

in
t

m
ai

n
(

in
t

ar
g

c
,

ch
ar
∗∗

ar
g

v
)

17
5

{

17
7

fl
o

a
t

x0
[N

U
M

_S
A

M
PL

ES
];

fl
o

a
t

y0
[N

U
M

_S
A

M
PL

ES
];

17
9

fl
o

a
t

z0
[N

U
M

_S
A

M
PL

ES
];

fl
o

a
t

k
[N

U
M

_S
A

M
PL

ES
];

18
1

fl
o

a
t

l[
N

U
M

_S
A

M
PL

ES
];

fl
o

a
t

m
[N

U
M

_S
A

M
PL

ES
];

18
3

fl
o

a
t

n
[N

U
M

_S
A

M
PL

ES
];

fl
o

a
t

c
[N

U
M

_S
A

M
PL

ES
];

18
5

fl
o

a
t

x1
[N

U
M

_S
A

M
PL

ES
];

18
7

fl
o

a
t

y1
[N

U
M

_S
A

M
PL

ES
];

fl
o

a
t

z1
[N

U
M

_S
A

M
PL

ES
];

18
9

in
it

_
fp

g
a

()
;

19
1

g
en

_
in

p
u

ts
(x

0
,

y0
,

z0
,

k
,

l
,

m
,

n
,

c
)

;
19

3

n
o

rm
al

_
ar

ch
(x

0
,

y0
,

z0
,

k
,

l
,

m
,

n
,

c
,

x1
,

y1
,z

1
)

;
19

5

re
tu

rn
0

;
19

7
}

67

A
pp

en
di

x
D

A
N

SI
-C

H
os

tC
od

e
of

N
or

m
al

-V
ec

to
r

C
al

cu
la

tio
n

.
1

#
in

cl
u

d
e

<
st

d
io

.h
>

#
in

cl
u

d
e

<
st

d
li

b
.h

>
3

#
in

cl
u

d
e

<
ti

m
e

.h
>

#
in

cl
u

d
e

"
m

it
h

al
.h

"
5

#
in

cl
u

d
e

"
m

it
h

al
_

g
en

.h
"

#
in

cl
u

d
e

"
fl

o
a

t
.h

"
7

#
d

ef
in

e
N

U
M

_S
A

M
PL

ES
13

10
72

9

FP
G

A
∗

f
;

11
P

ro
ce

ss
o

r
∗p

;
fl

o
a

t
∗r

am
_a

;
13

fl
o

a
t
∗r

am
_b

;
fl

o
a

t
∗r

am
_c

;
15

fl
o

a
t
∗r

am
_d

;

17
un

io
n

h
e

x
_

fl
o

a
t

{
fl

o
a

t
f

;

68
19

lo
n

g
l;

}
;

21

in
t

in
it

_
fp

g
a

()
23

{
ST

A
TU

S
s

;
25

//
T

he
fo

ll
o

w
in

g
co

d
e

is
p

ro
vi

d
ed

by
M

it
ri

o
n

ic
s

fo
r

h
o

st
−F

PG
A

in
te

rf
a

c
e

.
27

//
A

ll
o

c
a

te
a

FP
G

A
.

f
=

m
it

ri
o

n
_

fp
g

a
_

a
ll

o
c

a
te

("
"

)
;

29
if

(f
==

N
U

LL
)

{
fp

ri
n

tf
(

st
d

e
rr

,
"C

ou
ld

n
o

t
a

ll
o

c
a

te
a

FP
G

A
\n

"
)

;
31

e
x

it
(1

)
;

}
33

//
C

re
a

te
M

it
ri

o
n

p
ro

ce
ss

o
r

.
35

p
=

m
it

ri
o

n
_

p
ro

c
e

ss
o

r_
c

re
a

te
("

to
p

.b
in

.u
fp

"
)

;
if

(f
==

N
U

LL
)

{
37

fp
ri

n
tf

(
st

d
e

rr
,

"C
ou

ld
n

o
t

c
re

a
te

M
it

ri
o

n
p

ro
ce

ss
o

r
\n

"
)

;
e

x
it

(1
)

;
39

}

41
//

L
oa

d
th

e
M

it
ri

o
n

p
ro

ce
ss

o
r

o
n

to
th

e
FP

G
A

.
s

=
m

it
ri

o
n

_
fp

g
a_

lo
ad

_
p

ro
ce

ss
o

r
(f

,
p

)
;

43
if

(s
!=

O
K

)
{

fp
ri

n
tf

(
st

d
e

rr
,

"C
ou

ld
n

o
t

lo
ad

th
e

M
it

ri
o

n
p

ro
ce

ss
o

r
o

n
to

th
e

FP
G

A
\n

"
)

;
45

e
x

it
(1

)
;

}
47

//
A

ss
o

c
ia

te
v

ir
tu

a
l

m
em

or
y

sp
a

ce
s

w
it

h
Q

D
R

SR
AM

m
em

or
y

a
d

d
re

ss
es

.
49

ra
m

_a
=

(
fl

o
a

t∗
)

m
it

ri
o

n
_

p
ro

c
e

ss
o

r_
re

g
_

b
u

ff
e

r
(p

,
"r

am
_0

"
,

N
U

LL
,

N
U

M
_S

A
M

PL
ES

∗2
∗

si
ze

o
f(

fl
o

a
t)
∗4

,
W

R
IT

E_
D

A
TA

)
;

69
51

ra
m

_b
=

(
fl

o
a

t∗
)

m
it

ri
o

n
_

p
ro

c
e

ss
o

r_
re

g
_

b
u

ff
e

r
(p

,
"r

am
_1

"
,

N
U

LL
,

N
U

M
_S

A
M

PL
ES

∗2
∗

si
ze

o
f(

fl
o

a
t)
∗4

,
W

R
IT

E_
D

A
TA

)
;

53
ra

m
_c

=
(

fl
o

a
t∗

)
m

it
ri

o
n

_
p

ro
c

e
ss

o
r_

re
g

_
b

u
ff

e
r

(p
,

"r
am

_2
"

,
N

U
LL

,
N

U
M

_S
A

M
PL

ES
∗2
∗

si
ze

o
f(

fl
o

a
t)
∗4

,
R

EA
D

_D
A

TA
)

;

55
ra

m
_d

=
(

fl
o

a
t∗

)
m

it
ri

o
n

_
p

ro
c

e
ss

o
r_

re
g

_
b

u
ff

e
r

(p
,

"r
am

_3
"

,
N

U
LL

,
N

U
M

_S
A

M
PL

ES
∗2
∗

si
ze

o
f(

fl
o

a
t)
∗4

,
R

EA
D

_D
A

TA
)

;

57
re

tu
rn

1
;

}
59

n
o

rm
al

_
ar

ch
(

fl
o

a
t
∗x

,
fl

o
a

t
∗y

,
fl

o
a

t
∗u

,
fl

o
a

t
∗c

,
fl

o
a

t
∗

f_
v

al
,

fl
o

a
t
∗f

dx
,

fl
o

a
t
∗f

d
y

)
61

{
in

t
i;

63
in

t
n

;

65
//

L
oa

d
th

e
13

10
72

g
en

er
a

te
d

sa
m

p
le

s
4

ti
m

es
to

fi
ll

52
82

44
(2

^1
9

)
b

lo
ck

s
o

f
ra

m
.

fo
r

(n
=

0
;

n
<

4
;

n
+

+
)

67
{

fo
r

(
i

=
0

;
i

<
N

U
M

_S
A

M
PL

ES
;

i+
+

)
69

{
in

t
o

ff
se

t
=

i
∗

2
;

71
ra

m
_a

[(
o

ff
se

t+
0)

+
n∗

N
U

M
_S

A
M

PL
ES

]
=

x
[

i
];

ra
m

_a
[(

o
ff

se
t+

1)
+

n∗
N

U
M

_S
A

M
PL

ES
]

=
y

[
i

];
73

ra
m

_b
[(

o
ff

se
t+

0)
+

n∗
N

U
M

_S
A

M
PL

ES
]

=
u

[
i

];
ra

m
_b

[(
o

ff
se

t+
1)

+
n∗

N
U

M
_S

A
M

PL
ES

]
=

c
[

i
];

75
}

}

70
77

cl
o

ck
_

t
st

a
rt

_
fp

g
a

,
en

d
_

fp
g

a
;

79

//
B

eg
in

ti
m

e
m

ea
su

re
m

en
t.

81
st

a
rt

_
fp

g
a

=
cl

o
ck

()
;

83
//

R
un

FP
G

A
d

es
ig

n
2^

11
ti

m
es

fo
r

a
to

ta
l

o
f

2
^1

1
∗2

^1
9

,
o

r
2^

30
to

ta
l

sa
m

p
le

s
.

fo
r

(
i=

0
;

i<
2

0
4

8
;

i+
+

)
85

{
m

it
ri

o
n

_
p

ro
c

es
so

r_
ru

n
(p

)
;

87

m
it

ri
o

n
_

p
ro

c
e

ss
o

r_
w

a
it

(p
)

;
89

}

91
//

E
nd

ti
m

e
m

ea
su

re
m

en
t.

en
d

_
fp

g
a

=
cl

o
ck

()
;

93

//
D

is
p

la
y

ti
m

e
m

ea
su

re
m

en
t

95
p

ri
n

tf
("

E
la

p
se

d
C

PU
T

im
e

=
%

16
.5

lf
se

co
n

d
s

\n
"

,
(e

n
d

_
fp

g
a−

st
a

rt
_

fp
g

a
)

/(
d

ou
b

le
)C

LO
C

K
S_

PE
R

_S
EC

)
;

97
fo

r
(n

=
0

;
n

<
4

;
n

+
+

)
{

99
fo

r
(

i
=

0
;

i
<

N
U

M
_S

A
M

PL
ES

;
i+

+
)

{
10

1
un

io
n

h
e

x
_

fl
o

a
t

x_
h

,
y_

h
,

u_
h

,
c_

h
;

10
3

x_
h

.f
=

x
[

i
];

y_
h

.f
=

y
[

i
];

10
5

u_
h

.f
=

u
[

i
];

c_
h

.f
=

c
[

i
];

71
10

7

//
D

is
p

la
y

c
a

lc
u

la
ti

o
n

in
p

u
ts

.
10

9
p

ri
n

tf
("

%
ld

:
x

=
%

x
,

y
=

%
x

,
u

=
%

x
,

c
=

%
x

\n
"

,
i

,
x_

h
.l

,
y_

h
.l

,
u_

h
.l

,
c_

h
.l

)
;

11
1

in
t

o
ff

se
t

=
i∗

2
;

f_
v

al
[

i]
=

ra
m

_c
[(

o
ff

se
t+

0)
+

n∗
N

U
M

_S
A

M
PL

ES
];

11
3

fd
x

[
i]

=
ra

m
_c

[(
o

ff
se

t+
1)

+
n∗

N
U

M
_S

A
M

PL
ES

];
fd

y
[

i]
=

ra
m

_d
[(

o
ff

se
t+

0)
+

n∗
N

U
M

_S
A

M
PL

ES
];

11
5

un
io

n
h

e
x

_
fl

o
a

t
f_

v
al

_
h

,
fd

x_
h

,
fd

y
_

h
;

11
7

f_
v

al
_

h
.f

=
f_

v
al

[
i

];
fd

x
_

h
.f

=
fd

x
[

i
];

11
9

fd
y

_
h

.f
=

fd
y

[
i

];

12
1

//
D

is
p

la
y

c
a

lc
u

la
ti

o
n

o
u

tp
u

ts
.

p
ri

n
tf

("
%

ld
:

f
=

%
x

,
fd

x
=

%
x

,
fd

y
=

%
x

\n
"

,
i

,
f_

v
al

_
h

.l
,

fd
x

_
h

.l
,

fd
y

_
h

.l
)

;
12

3
}

}
12

5
}

12
7

vo
id

g
e

t_
in

p
u

ts
(

fl
o

a
t
∗x

,
fl

o
a

t
∗y

,
fl

o
a

t
∗u

,
fl

o
a

t
∗c

)
{

12
9

in
t

id
x

=
0

;

13
1

fl
o

a
t

x_
n

;
fl

o
a

t
y_

n
;

13
3

fl
o

a
t

c_
n

;

13
5

//
G

en
er

a
te

re
a

so
n

a
b

le
va

lu
es

fo
r

x
,

y
,

u
,

an
d

c
.

25
6

va
lu

es
o

f
x

,
//

12
8

va
lu

es
o

f
y

,
an

d
4

va
lu

es
o

f
c

a
re

u
se

d
fo

r
a

to
ta

l
o

f

72
13

7
//

2^
8
∗

2^
7
∗

2^
2

=
2^

17
o

r
13

10
72

sa
m

p
le

s
.

u
=

(1
+

k
)c

^2
an

d
//

a
va

lu
e

o
f

1
is

as
su

m
ed

fo
r

k
,

w
h

ic
h

is
re

a
so

n
a

b
le

.
13

9

fo
r

(x
_n

=
−

2.
0;

x_
n

<=
3

.1
1

;
x_

n
+

=
0

.0
2

)
{

14
1

fo
r

(y
_n

=
−

2.
0;

y_
n

<=
3

.1
1

;
y_

n
+

=
0

.0
4

)
{

fo
r

(c
_n

=
0

.0
;

c_
n

<=
.1

6
;

c_
n

+
=

0
.0

5
){

14
3

x
[i

d
x

]
=

x_
n

;
y

[i
d

x
]

=
y_

n
;

14
5

u
[i

d
x

]
=

2∗
c_

n
∗c

_n
;

c
[i

d
x

]
=

c_
n

;
14

7
id

x
+

+
;

}
14

9
}

}
15

1

}
15

3

in
t

m
ai

n
(

in
t

ar
g

c
,

ch
ar
∗∗

ar
g

v
)

15
5

{

15
7

fl
o

a
t

x
[N

U
M

_S
A

M
PL

ES
];

fl
o

a
t

y
[N

U
M

_S
A

M
PL

ES
];

15
9

fl
o

a
t

u
[N

U
M

_S
A

M
PL

ES
];

fl
o

a
t

c
[N

U
M

_S
A

M
PL

ES
];

16
1

fl
o

a
t

f_
v

al
[N

U
M

_S
A

M
PL

ES
];

16
3

fl
o

a
t

fd
x

[N
U

M
_S

A
M

PL
ES

];
fl

o
a

t
fd

y
[N

U
M

_S
A

M
PL

ES
];

16
5

in
it

_
fp

g
a

()
;

16
7

g
e

t_
in

p
u

ts
(x

,y
,u

,c
)

;

73
16

9

n
o

rm
al

_
ar

ch
(x

,y
,u

,c
,f

_
v

al
,f

dx
,f

d
y

)
;

17
1

re
tu

rn
0

;
17

3
}

74

A
pp

en
di

x
E

A
N

SI
-C

Se
qu

en
tia

lI
m

pl
em

en
ta

tio
n

of
R

ay
-I

nt
er

se
ct

io
n

C
al

cu
la

tio
n

.
1

#
in

cl
u

d
e

<
st

d
io

.h
>

#
in

cl
u

d
e

<
st

d
li

b
.h

>
3

#
in

cl
u

d
e

<
ti

m
e

.h
>

#
in

cl
u

d
e

<
m

at
h

.h
>

5
#

in
cl

u
d

e
"

fl
o

a
t

.h
"

7
#

d
ef

in
e

N
U

M
_S

A
M

PL
ES

13
10

72

9
un

io
n

h
e

x
_

fl
o

a
t

{
fl

o
a

t
f

;
11

lo
n

g
l;

}
;

13

vo
id

n
o

rm
al

_
ar

ch
(

fl
o

a
t
∗x

0
,

fl
o

a
t
∗y

0
,

fl
o

a
t
∗z

0
,

fl
o

a
t
∗k

,
fl

o
a

t
∗l

,
fl

o
a

t
∗m

,
fl

o
a

t
∗n

,
fl

o
a

t
∗c

,
fl

o
a

t
∗x

1
,

fl
o

a
t
∗y

1
,

fl
o

a
t
∗z

1
)

15
{

75
lo

n
g

i
,n

;
17

cl
o

ck
_

t
st

ar
t_

cp
u

,
en

d_
cp

u
;

19

//
B

eg
in

ti
m

e
m

ea
su

re
m

en
t.

21
st

a
rt

_
c

p
u

=
cl

o
ck

()
;

23
//

R
un

se
q

u
e

n
ti

a
l

pr
og

ra
m

2^
13

ti
m

es
fo

r
a

to
ta

l
o

f
2

^1
3
∗2

^1
7

,
o

r
2^

30
to

ta
l

sa
m

p
le

s
.

fo
r

(n
=

0
;

co
u

n
t

<
8

1
9

2
;

n
+

+
)

25
{

fo
r

(
i=

0
;

i<
N

U
M

_S
A

M
PL

ES
;

i+
+

)
27

{
fl

o
a

t
g

=
n

[
i]
−

c
[

i]
∗(

x0
[

i]
∗

l[
i]

+
y0

[
i]
∗m

[
i]

+
(k

[
i]

+
1

.0
)∗

z0
[

i
]∗

n
[

i
])

;
29

fl
o

a
t

h
=

c
[

i]
∗(

x0
[

i]
∗

x0
[

i]
+

y0
[

i]
∗

y0
[

i]
+

(k
[

i]
+

1
.0

)∗
z0

[
i]
∗

z0
[

i
])
−

2.
0∗

z0
[

i
];

fl
o

a
t

f
=

c
[

i]
∗(

1
.0

+
k

[
i]
∗n

[
i]
∗n

[
i

])
;

31
fl

o
a

t
u

=
(g
∗g
−

f∗
h

)
/(

g+
sq

rt
f

(g
∗g
−

f∗
h

))
;

x1
[

i]
=

u∗
l[

i]
+

x0
[

i
];

33
y1

[
i]

=
u∗

m
[

i]
+

y0
[

i
];

z1
[

i]
=

u∗
n

[
i]

+
z0

[
i

];
35

}
}

37

//
E

nd
ti

m
e

m
ea

su
re

m
en

t.
39

en
d_

cp
u

=
cl

o
ck

()
;

41
//

D
is

p
la

y
ti

m
e

m
ea

su
re

m
en

t
p

ri
n

tf
("

E
la

p
se

d
C

PU
T

im
e

=
%

16
.5

lf
se

co
n

d
s

\n
"

,
(e

nd
_c

pu
−

st
a

rt
_

c
p

u
)

/(
d

ou
b

le
)C

LO
C

K
S_

PE
R

_S
EC

)
;

43

76
fo

r
(

i
=

0
;

i
<

N
U

M
_S

A
M

PL
ES

;
i+

+
)

45
{

un
io

n
h

e
x

_
fl

o
a

t
x0

_h
,

y0
_h

,
z0

_h
,

k_
h

,
l_

h
,

m
_h

,
n_

h
,

c_
h

;
47

x0
_h

.f
=

x0
[

i
];

49
y0

_h
.f

=
y0

[
i

];
z0

_h
.f

=
z0

[
i

];
51

k_
h

.f
=

k
[

i
];

l_
h

.f
=

l[
i

];
53

m
_h

.f
=

m
[

i
];

n_
h

.f
=

n
[

i
];

55
c_

h
.f

=
c

[
i

];

57
//

D
is

p
la

y
c

a
lc

u
la

ti
o

n
in

p
u

ts
.

p
ri

n
tf

("
%

ld
:

x0
=

%
x

,
y0

=
%

x
,

z0
=

%
x

,
k

=
%

x
,

l
=

%
x

,
m

=
%

x
,

n
=

%
x

,
c

=
%

x
\n

"
,

i
,

x0
_h

.l
,

y0
_h

.l
,

z0
_h

.l
,

k_
h

.l
,

l_
h

.l
,

m
_h

.l
,

n_
h

.l
,

c_
h

.l
)

;
59

un
io

n
h

e
x

_
fl

o
a

t
x1

_h
,

y1
_h

,
z1

_h
;

61
x1

_h
.f

=
x1

[
i

];
y1

_h
.f

=
y1

[
i

];
63

z1
_h

.f
=

z1
[

i
];

65
//

D
is

p
la

y
c

a
lc

u
la

ti
o

n
o

u
tp

u
ts

.
p

ri
n

tf
("

%
ld

:
x1

=
%

x
,

y1
=

%
x

,
z1

=
%

x
\n

"
,

i
,

x1
_h

.l
,

y1
_h

.l
,

z1
_h

.l
)

;
67

}
69

}

71
vo

id
g

en
_

in
p

u
ts

(
fl

o
a

t
∗x

0
,

fl
o

a
t
∗y

0
,

fl
o

a
t
∗z

0
,

fl
o

a
t
∗k

,
fl

o
a

t
∗l

,
fl

o
a

t
∗m

,
fl

o
a

t
∗n

,
fl

o
a

t
∗c

)

77
{

73
in

t
id

x
=

0
;

75
//

G
en

er
a

te
re

a
so

n
a

b
le

va
lu

es
fo

r
x

,
y

,
z

,
k

,
l

,
m

,
n

,
an

d
c

.
//

4
va

lu
es

o
f

x
,

4
va

lu
es

o
f

y
,

4
va

lu
es

o
f

z
,

4
va

lu
es

o
f

k
,

77
//

4
va

lu
es

o
f

l
,

4
va

lu
es

o
f

m
,

4
va

lu
es

o
f

n
,

an
d

8
va

lu
es

o
f

//
c

a
re

u
se

d
fo

r
a

to
ta

l
o

f
4∗

4∗
4∗

4∗
4∗

4∗
4∗

8
o

r
13

10
72

sa
m

p
le

s
.

79

in
t

x0
_c

,
y0

_c
,

z0
_c

,
k_

c
,

l_
c

,
m

_c
,

n_
c

,
c_

c
;

81

fo
r

(x
0_

c
=
−

1;
x0

_c
<

2
.1

;
x0

_c
+

+
){

83
fo

r
(y

0_
c

=
−

1;
y0

_c
<

2
.1

;
y0

_c
+

+
){

fo
r

(z
0

_c
=
−

1;
z0

_
c

<
2

.1
;

z0
_

c
+

+
){

85
fo

r
(k

_c
=
−

2;
k_

c
<

1
.1

;
k_

c
+

+
){

fo
r

(
l_

c
=
−

1;
l_

c
<

2
.1

;
l_

c
+

+
){

87
fo

r
(m

_c
=
−

1;
m

_c
<

2
.1

;
m

_c
+

+
){

fo
r

(n
_c

=
−

1;
n_

c
<

2
.1

;
n_

c
+

+
){

89
fo

r
(c

_
c

=
0

;
c_

c
<

7
.1

;
c_

c
+

+
)

{
91

x0
[i

d
x

]
=

x0
_c

;
y0

[i
d

x
]

=
y0

_c
;

93
z0

[i
d

x
]

=
z0

_c
;

k
[i

d
x

]
=

k_
c

;
95

l[
id

x
]

=
l_

c
;

m
[i

d
x

]
=

m
_c

;
97

n
[i

d
x

]
=

n_
c

;
c

[i
d

x
]

=
c_

c
;

99
id

x
+

+
;

}}
}}

}}
}

10
1

}
}

10
3

78
in

t
m

ai
n

(
in

t
ar

g
c

,
ch

ar
∗∗

ar
g

v
)

10
5

{

10
7

fl
o

a
t

x0
[N

U
M

_S
A

M
PL

ES
];

fl
o

a
t

y0
[N

U
M

_S
A

M
PL

ES
];

10
9

fl
o

a
t

z0
[N

U
M

_S
A

M
PL

ES
];

fl
o

a
t

k
[N

U
M

_S
A

M
PL

ES
];

11
1

fl
o

a
t

l[
N

U
M

_S
A

M
PL

ES
];

fl
o

a
t

m
[N

U
M

_S
A

M
PL

ES
];

11
3

fl
o

a
t

n
[N

U
M

_S
A

M
PL

ES
];

fl
o

a
t

c
[N

U
M

_S
A

M
PL

ES
];

11
5

fl
o

a
t

x1
[N

U
M

_S
A

M
PL

ES
];

11
7

fl
o

a
t

y1
[N

U
M

_S
A

M
PL

ES
];

fl
o

a
t

z1
[N

U
M

_S
A

M
PL

ES
];

11
9

g
en

_
in

p
u

ts
(x

0
,y

0
,z

0
,k

,l
,m

,n
,c

)
;

12
1

n
o

rm
al

_
ar

ch
(x

0
,y

0
,z

0
,k

,l
,m

,n
,c

,x
1

,y
1

,z
1

)
;

12
3

re
tu

rn
0

;
12

5
}

79

A
pp

en
di

x
F

A
N

SI
-C

Se
qu

en
tia

lI
m

pl
em

en
ta

tio
n

of
N

or
m

al
-V

ec
to

r
C

al
cu

la
tio

n

.
1

#
in

cl
u

d
e

<
st

d
io

.h
>

#
in

cl
u

d
e

<
st

d
li

b
.h

>
3

#
in

cl
u

d
e

<
ti

m
e

.h
>

#
in

cl
u

d
e

<
m

at
h

.h
>

5
#

in
cl

u
d

e
"

fl
o

a
t

.h
"

7
#

d
ef

in
e

N
U

M
_S

A
M

PL
ES

13
10

72

9
un

io
n

h
e

x
_

fl
o

a
t

{
fl

o
a

t
f

;
11

lo
n

g
l;

}
;

13

vo
id

n
o

rm
al

_
ar

ch
(

fl
o

a
t
∗x

,
fl

o
a

t
∗y

,
fl

o
a

t
∗u

,
fl

o
a

t
∗c

,
fl

o
a

t
∗

f_
v

al
,

fl
o

a
t
∗f

dx
,

fl
o

a
t
∗f

d
y

)
15

{

80
lo

n
g

i
,n

;
17

fl
o

a
t

v
,

a
,

p
,

q
,

r
,

s
,

w
,

b
,

dx
,

dy
,

e
;

19
cl

o
ck

_
t

st
ar

t_
cp

u
,

en
d_

cp
u

;

21
//

B
eg

in
ti

m
e

m
ea

su
re

m
en

t.
st

a
rt

_
c

p
u

=
cl

o
ck

()
;

23

//
R

un
se

q
u

e
n

ti
a

l
pr

og
ra

m
2^

13
ti

m
es

fo
r

a
to

ta
l

o
f

2
^1

3
∗2

^1
9

,
o

r
2^

30
to

ta
l

sa
m

p
le

s
.

25
fo

r
(n

=
0

;
n

<
8

1
9

2
;

n
+

+
)

{
27

fo
r

(
i=

0
;

i<
N

U
M

_S
A

M
PL

ES
;

i+
+

)
{

29
v=

u
[

i]
∗(

x
[

i]
∗x

[
i]

+
y

[
i]
∗y

[
i

])
;

a
=

sq
rt

f
(1

.0
f−

v
)

;
31

p=
1+

a
;

q=
a∗

p
;

33
r=

p∗
q

;
s=

2∗
q

;
35

w
=

c
[

i
]/

r
;

b=
w
∗(

s+
v

)
;

37
dx

=
b∗

x
[

i
];

dy
=

b∗
y

[
i

];
39

e=
sq

rt
f

(d
x
∗d

x+
dy
∗d

y
+

1
.0

f)
;

f_
v

al
[

i]
=

1
/e

;
41

fd
x

[
i]

=
f_

v
al

[
i]
∗

dx
;

fd
y

[
i]

=
f_

v
al

[
i]
∗

dy
;

43
}

}
45

//
E

nd
ti

m
e

m
ea

su
re

m
en

t.

81
47

en
d_

cp
u

=
cl

o
ck

()
;

49
//

D
is

p
la

y
ti

m
e

m
ea

su
re

m
en

t
p

ri
n

tf
("

E
la

p
se

d
C

PU
T

im
e

=
%

16
.5

lf
se

co
n

d
s

\n
"

,
(e

nd
_c

pu
−

st
a

rt
_

c
p

u
)

/(
d

ou
b

le
)

C
LO

C
K

S_
PE

R
_S

EC
)

;
51

fo
r

(
i

=
0

;
i

<
N

U
M

_S
A

M
PL

ES
;

i+
+

)
53

{

55
un

io
n

h
e

x
_

fl
o

a
t

x_
h

,
y_

h
,

u_
h

,
c_

h
;

x_
h

.f
=

x
[

i
];

57
y_

h
.f

=
y

[
i

];
u_

h
.f

=
u

[
i

];
59

c_
h

.f
=

c
[

i
];

61
//

D
is

p
la

y
c

a
lc

u
la

ti
o

n
in

p
u

ts
.

p
ri

n
tf

("
%

ld
:

x
=

%
x

,
y

=
%

x
,

u
=

%
x

,
c

=
%

x
\n

"
,

i
,

x_
h

.l
,

y_
h

.l
,

u_
h

.l
,

c_
h

.l
)

;
63

un
io

n
h

e
x

_
fl

o
a

t
f_

v
al

_
h

,
fd

x_
h

,
fd

y
_

h
;

65
f_

v
al

_
h

.f
=

f_
v

al
[

i
];

fd
x

_
h

.f
=

fd
x

[
i

];
67

fd
y

_
h

.f
=

fd
y

[
i

];

69
//

D
is

p
la

y
c

a
lc

u
la

ti
o

n
o

u
tp

u
ts

.
p

ri
n

tf
("

%
ld

:
f

=
%

x
,

fd
x

=
%

x
,

fd
y

=
%

x
\n

"
,

i
,

f_
v

al
_

h
.l

,
fd

x
_

h
.l

,
fd

y
_

h
.

l)
;

71

}
73

}

75
vo

id
g

en
_

in
p

u
ts

(
fl

o
a

t
∗x

,
fl

o
a

t
∗y

,
fl

o
a

t
∗u

,
fl

o
a

t
∗c

)

82
{

77
lo

n
g

id
x

=
0

;

79
fl

o
a

t
x_

n
;

fl
o

a
t

y_
n

;
81

fl
o

a
t

c_
n

;

83
//

G
en

er
a

te
re

a
so

n
a

b
le

va
lu

es
fo

r
x

,
y

,
u

,
an

d
c

.
25

6
va

lu
es

o
f

x
,

//
12

8
va

lu
es

o
f

y
,

an
d

4
va

lu
es

o
f

c
a

re
u

se
d

fo
r

a
to

ta
l

o
f

85
//

2^
8
∗

2^
7
∗

2^
2

=
2^

17
o

r
13

10
72

sa
m

p
le

s
.

u
=

(1
+

k
)c

^2
an

d
//

a
va

lu
e

o
f

1
is

as
su

m
ed

fo
r

k
,

w
h

ic
h

is
re

a
so

n
a

b
le

.
87

fo
r

(x
_n

=
−

2.
0;

x_
n

<=
3

.1
1

;
x_

n
+

=
0

.0
2

)
{

89
fo

r
(y

_n
=
−

2.
0;

y_
n

<=
3

.1
1

;
y_

n
+

=
0

.0
4

)
{

fo
r

(c
_n

=
0

.0
;

c_
n

<=
.1

6
;

c_
n

+
=

0
.0

5
){

91
x

[i
d

x
]

=
x_

n
;

y
[i

d
x

]
=

y_
n

;
93

u
[i

d
x

]
=

2∗
c_

n
∗c

_n
;

c
[i

d
x

]
=

c_
n

;
95

id
x

+
+

;
}

97
}

}
99

}

10
1

in
t

m
ai

n
(

in
t

ar
g

c
,

ch
ar
∗∗

ar
g

v
)

{
10

3

fl
o

a
t

x
[N

U
M

_S
A

M
PL

ES
];

10
5

fl
o

a
t

y
[N

U
M

_S
A

M
PL

ES
];

fl
o

a
t

u
[N

U
M

_S
A

M
PL

ES
];

10
7

fl
o

a
t

c
[N

U
M

_S
A

M
PL

ES
];

83
10

9
fl

o
a

t
f_

v
al

[N
U

M
_S

A
M

PL
ES

];
fl

o
a

t
fd

x
[N

U
M

_S
A

M
PL

ES
];

11
1

fl
o

a
t

fd
y

[N
U

M
_S

A
M

PL
ES

];

11
3

g
en

_
in

p
u

ts
(x

,y
,u

,c
)

;

11
5

n
o

rm
al

_
ar

ch
(x

,y
,u

,c
,f

_
v

al
,f

dx
,f

d
y

)
;

11
7

re
tu

rn
0

;
}

	Title Page
	Trident_Final

